Impact of Parasitic Capacitor to the GaN HEMT Devices

Article Preview

Abstract:

The objective of this paper is to evaluate the impact of the parasitic capacitor to the Gallium-Nitride (GaN) based high-electron-mobility transistor (HEMT). Because of the high switching frequency operation, the parasitic inductor has caught a lot of attention when the GaN HEMT is applied in the high power applications. However, the impact of parasitic capacitor to the GaN HEMT is not discussed in literatures. A prototype circuit is built and tested to evaluate the impacts of parasitic capacitor to the GaN HEMT performance. The results show that the parasitic capacitor can induce voltage spike and damage the GaN HEMT.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

515-520

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Peng, Zhenfei & Yang, Shanshan & Feng, Yong & Hong, Zhiliang & Liu, Bill: 2011. An 80% peak efficiency, 410mW, single supply rail powered class-I linear audio amplifier, IEEE Custom Integrated Circuits Conference: 1-4.

DOI: 10.1109/cicc.2011.6055395

Google Scholar

[2] Walker, G. R.: 2013. A class B switch-mode assisted linear amplifier, IEEE Trans. Power Electronics, 18(2): 1278-1285.

DOI: 10.1109/tpel.2003.818825

Google Scholar

[3] Itoh, J. -I. & Fujii, T.: 2008. A new approach for High efficiency Buck-Boost DC/DC converters using series compensation, IEEE Power Electronics Specialists Conference: 2109-2114.

DOI: 10.1109/pesc.2008.4592254

Google Scholar

[4] Manohar, S. K. & Balsara, P.T.: 2013. 94. 6% peak efficiency DCM buck converter with fast adaptive dead-time control, ESSCIRC: 153-156.

DOI: 10.1109/esscirc.2013.6649095

Google Scholar

[5] Villar, G. & Alarcon, E. & Guinjoan, F. & Poveda: A. 2005. Quasi-optimum efficiency in output voltage hysteretic control for a buck switching converter with wide load range, IEEE Power Electronics Specialists Conference: 2118-2125.

DOI: 10.1109/pesc.2005.1581925

Google Scholar

[6] Zhang, Weiping & Liu, Yuanchao & Li, Zhi & Zhang, Xiaoqiang: 2009. The dynamic power loss analysis in buck converter, IEEE Power Electronics and Motion Control Conference: 362-367.

DOI: 10.1109/ipemc.2009.5157413

Google Scholar

[7] Zhou, Xin & Liang, Zhigang & Huang, A.: 2010. A new resonant gate driver for switching loss reduction of high side switch in buck converter, IEEE Applied Power Electronics Conference and Exposition: 1477-1481.

DOI: 10.1109/apec.2010.5433425

Google Scholar

[8] Chen, Zong-xiang & Ge, Lu-sheng & Hui, Qi & Liu, Yan-Fei: 2010. An accurate loss model for current-source gate driver with interleaving buck converter, IEEE Energy Conversion Congress and Exposition: 1509-3515.

DOI: 10.1109/ecce.2010.5618302

Google Scholar

[9] Hughes, Brian & Lazar, James & Hulsey, Stephen & Musni, Marcel & Zehnder, Daniel & Garrido, Austin & Khanna, Raghav & Chu, Rongming & Khalil, Sameh & Boutros, Karim: 2014. Normally-off GaN-on-Si multi-chip module Boost converter with 96% efficiency and low gate and drain overshoot, IEEE Applied Power Electronics Conference and Exposition: 484-487.

DOI: 10.1109/apec.2014.6803352

Google Scholar

[10] Jenkins, L.L. & Wilson, C.G. & Moses, J.D. & Aggas, J.M. & Rhea, B.K. & Dean, R.N.: 2013. The impact of parallel GaN HEMTs on efficiency of a 12-to-1 V buck converter, IEEE Wide Bandgap Power Devices and Applications: 197-200.

DOI: 10.1109/wipda.2013.6695596

Google Scholar

[11] Zhang, Xuan & Zhang, Chengcheng & Lu, Xintong & Davidson, Ernest & Sievers, Markus & Scott, Mark & Xu, Pu & Wang, Jin: 2014. A GaN transistor based 90W AC/DC adapter with a buck-PFC stage and an isolated quasi-switched- capacitor DC/DC stage, IEEE Applied Power Electronics Conference and Exposition: 109-116.

DOI: 10.1109/apec.2014.6803296

Google Scholar

[12] Acanski, M. & Popovic-Gerber, J. & Ferreira, J.A.: 2011. Comparison of Si and GaN power devices used in PV module integrated converters, IEEE Energy Conversion Congress and Exposition: 1217-1223.

DOI: 10.1109/ecce.2011.6063915

Google Scholar

[13] Imada, T. & Kanamura, M. & Kikkawa, T.: 2010. Enhancement-mode GaN MIS-HEMTs for power supplies, International Power Electronics Conference: 1027-1033.

DOI: 10.1109/ipec.2010.5542039

Google Scholar

[14] Su, Liang-Yu & Lee, F. & and Huang, J.: 2014. Enhancement-mode GaN-based high-electron mobility transistors on the Si substrate with a p-type GaN cap layer, IEEE Trans. Electron Devices 61(6): 460-465.

DOI: 10.1109/ted.2013.2294337

Google Scholar

[15] Imada, T. & Motoyoshi, K. & Kanamura, M. & Kikkawa, T.: 2011. Reliability analysis of enhancement-mode GaN MIS-HEMT with gate-recess structure for power supplies, IEEE Integrated Reliability Workshop: 38-41.

DOI: 10.1109/iirw.2011.6142584

Google Scholar

[16] Luo, Fang & Chen, Zheng & Xue, Lingxiao & Mattavelli, Paolo & Boroyevich, Dushan & Hughes, Brian: 2014. Design consideration for GaN HEMT multichip halfbridge module for high-frequency power converters, IEEE Applied Power Electronics Conference and Exposition: 537-544.

DOI: 10.1109/apec.2014.6803361

Google Scholar

[17] Hattori F. & Yamamoto, M.: 2012. Proposal and analysis of gate drive circuit suitable for GaN-FET, Annual Conference on IEEE Industrial Electronics Society: 685-690.

DOI: 10.1109/iecon.2012.6388669

Google Scholar

[18] Hattori, F. & Umegami, H. & Yamamoto, M.: 2013. Capacitor-less gate drive circuit capable of high-efficiency operation for non-insulating-gate GaN FETs, IEEE Trans. Electron Devices 60(10): 3249-3255.

DOI: 10.1109/ted.2013.2272094

Google Scholar

[19] Hattori, F. & Umegami, H. & Yoshida, T. & Yamamoto, M.: 2013. Drive loss analysis and comparison of capacitor-less gate drive circuit for GaN FETs with capacitor type gate drive circuits, IEEE Power Electronics and Drive Systems: 1301-1305.

DOI: 10.1109/peds.2013.6527220

Google Scholar

[20] Long, Yu & Zhang, Weimin & Blalock, Benjamin & Tolbert, Leon & Wang, Fred: 2014. A 10-MHz resonant gate driver design for LLC resonant DC-DC converters using GaN devices, IEEE Applied Power Electronics Conference and Exposition: 2093-(2097).

DOI: 10.1109/apec.2014.6803595

Google Scholar

[21] Shu, Ji & Reusch, D. & Lee, F.C.: 2012. High frequency high power density 3D integrated gallium nitride based point of load module, IEEE Energy Conversion Congress and Exposition: 4267-4273.

DOI: 10.1109/ecce.2012.6342242

Google Scholar

[22] Reynga-Juarez, J.E. & Landa, Andres Zarate-de: 2008. A new method for determining the gate resistance and inductance of GaN HEMTs based on the extrema points of Z11 curves, IEEE Microwave Symposium Digest: 1409-1412.

DOI: 10.1109/mwsym.2008.4633042

Google Scholar

[23] Information on http: /epc-co. com/epc/. http: /epc-co. com/epc.

DOI: 10.17771/pucrio.epc.50367

Google Scholar