[1]
Peng, Zhenfei & Yang, Shanshan & Feng, Yong & Hong, Zhiliang & Liu, Bill: 2011. An 80% peak efficiency, 410mW, single supply rail powered class-I linear audio amplifier, IEEE Custom Integrated Circuits Conference: 1-4.
DOI: 10.1109/cicc.2011.6055395
Google Scholar
[2]
Walker, G. R.: 2013. A class B switch-mode assisted linear amplifier, IEEE Trans. Power Electronics, 18(2): 1278-1285.
DOI: 10.1109/tpel.2003.818825
Google Scholar
[3]
Itoh, J. -I. & Fujii, T.: 2008. A new approach for High efficiency Buck-Boost DC/DC converters using series compensation, IEEE Power Electronics Specialists Conference: 2109-2114.
DOI: 10.1109/pesc.2008.4592254
Google Scholar
[4]
Manohar, S. K. & Balsara, P.T.: 2013. 94. 6% peak efficiency DCM buck converter with fast adaptive dead-time control, ESSCIRC: 153-156.
DOI: 10.1109/esscirc.2013.6649095
Google Scholar
[5]
Villar, G. & Alarcon, E. & Guinjoan, F. & Poveda: A. 2005. Quasi-optimum efficiency in output voltage hysteretic control for a buck switching converter with wide load range, IEEE Power Electronics Specialists Conference: 2118-2125.
DOI: 10.1109/pesc.2005.1581925
Google Scholar
[6]
Zhang, Weiping & Liu, Yuanchao & Li, Zhi & Zhang, Xiaoqiang: 2009. The dynamic power loss analysis in buck converter, IEEE Power Electronics and Motion Control Conference: 362-367.
DOI: 10.1109/ipemc.2009.5157413
Google Scholar
[7]
Zhou, Xin & Liang, Zhigang & Huang, A.: 2010. A new resonant gate driver for switching loss reduction of high side switch in buck converter, IEEE Applied Power Electronics Conference and Exposition: 1477-1481.
DOI: 10.1109/apec.2010.5433425
Google Scholar
[8]
Chen, Zong-xiang & Ge, Lu-sheng & Hui, Qi & Liu, Yan-Fei: 2010. An accurate loss model for current-source gate driver with interleaving buck converter, IEEE Energy Conversion Congress and Exposition: 1509-3515.
DOI: 10.1109/ecce.2010.5618302
Google Scholar
[9]
Hughes, Brian & Lazar, James & Hulsey, Stephen & Musni, Marcel & Zehnder, Daniel & Garrido, Austin & Khanna, Raghav & Chu, Rongming & Khalil, Sameh & Boutros, Karim: 2014. Normally-off GaN-on-Si multi-chip module Boost converter with 96% efficiency and low gate and drain overshoot, IEEE Applied Power Electronics Conference and Exposition: 484-487.
DOI: 10.1109/apec.2014.6803352
Google Scholar
[10]
Jenkins, L.L. & Wilson, C.G. & Moses, J.D. & Aggas, J.M. & Rhea, B.K. & Dean, R.N.: 2013. The impact of parallel GaN HEMTs on efficiency of a 12-to-1 V buck converter, IEEE Wide Bandgap Power Devices and Applications: 197-200.
DOI: 10.1109/wipda.2013.6695596
Google Scholar
[11]
Zhang, Xuan & Zhang, Chengcheng & Lu, Xintong & Davidson, Ernest & Sievers, Markus & Scott, Mark & Xu, Pu & Wang, Jin: 2014. A GaN transistor based 90W AC/DC adapter with a buck-PFC stage and an isolated quasi-switched- capacitor DC/DC stage, IEEE Applied Power Electronics Conference and Exposition: 109-116.
DOI: 10.1109/apec.2014.6803296
Google Scholar
[12]
Acanski, M. & Popovic-Gerber, J. & Ferreira, J.A.: 2011. Comparison of Si and GaN power devices used in PV module integrated converters, IEEE Energy Conversion Congress and Exposition: 1217-1223.
DOI: 10.1109/ecce.2011.6063915
Google Scholar
[13]
Imada, T. & Kanamura, M. & Kikkawa, T.: 2010. Enhancement-mode GaN MIS-HEMTs for power supplies, International Power Electronics Conference: 1027-1033.
DOI: 10.1109/ipec.2010.5542039
Google Scholar
[14]
Su, Liang-Yu & Lee, F. & and Huang, J.: 2014. Enhancement-mode GaN-based high-electron mobility transistors on the Si substrate with a p-type GaN cap layer, IEEE Trans. Electron Devices 61(6): 460-465.
DOI: 10.1109/ted.2013.2294337
Google Scholar
[15]
Imada, T. & Motoyoshi, K. & Kanamura, M. & Kikkawa, T.: 2011. Reliability analysis of enhancement-mode GaN MIS-HEMT with gate-recess structure for power supplies, IEEE Integrated Reliability Workshop: 38-41.
DOI: 10.1109/iirw.2011.6142584
Google Scholar
[16]
Luo, Fang & Chen, Zheng & Xue, Lingxiao & Mattavelli, Paolo & Boroyevich, Dushan & Hughes, Brian: 2014. Design consideration for GaN HEMT multichip halfbridge module for high-frequency power converters, IEEE Applied Power Electronics Conference and Exposition: 537-544.
DOI: 10.1109/apec.2014.6803361
Google Scholar
[17]
Hattori F. & Yamamoto, M.: 2012. Proposal and analysis of gate drive circuit suitable for GaN-FET, Annual Conference on IEEE Industrial Electronics Society: 685-690.
DOI: 10.1109/iecon.2012.6388669
Google Scholar
[18]
Hattori, F. & Umegami, H. & Yamamoto, M.: 2013. Capacitor-less gate drive circuit capable of high-efficiency operation for non-insulating-gate GaN FETs, IEEE Trans. Electron Devices 60(10): 3249-3255.
DOI: 10.1109/ted.2013.2272094
Google Scholar
[19]
Hattori, F. & Umegami, H. & Yoshida, T. & Yamamoto, M.: 2013. Drive loss analysis and comparison of capacitor-less gate drive circuit for GaN FETs with capacitor type gate drive circuits, IEEE Power Electronics and Drive Systems: 1301-1305.
DOI: 10.1109/peds.2013.6527220
Google Scholar
[20]
Long, Yu & Zhang, Weimin & Blalock, Benjamin & Tolbert, Leon & Wang, Fred: 2014. A 10-MHz resonant gate driver design for LLC resonant DC-DC converters using GaN devices, IEEE Applied Power Electronics Conference and Exposition: 2093-(2097).
DOI: 10.1109/apec.2014.6803595
Google Scholar
[21]
Shu, Ji & Reusch, D. & Lee, F.C.: 2012. High frequency high power density 3D integrated gallium nitride based point of load module, IEEE Energy Conversion Congress and Exposition: 4267-4273.
DOI: 10.1109/ecce.2012.6342242
Google Scholar
[22]
Reynga-Juarez, J.E. & Landa, Andres Zarate-de: 2008. A new method for determining the gate resistance and inductance of GaN HEMTs based on the extrema points of Z11 curves, IEEE Microwave Symposium Digest: 1409-1412.
DOI: 10.1109/mwsym.2008.4633042
Google Scholar
[23]
Information on http: /epc-co. com/epc/. http: /epc-co. com/epc.
DOI: 10.17771/pucrio.epc.50367
Google Scholar