[1]
Chen, C. K., Lai, H. Y. & Liu, C. C.: Nonlinear Micro Circular Plate Analysis Using Hybrid Differential Transformation / Finite Difference Method. CMES: Computer Modeling in Engineering & Sciences 40 (2): 155-174. (2009).
Google Scholar
[2]
Ganji, B. A. & Majlis, B. Y.: Design and fabrication of a new MEMS capacitive microphoneusing a perforated aluminum diaphragm. Sensors and Actuators A 149: 29–37. (2009).
DOI: 10.1016/j.sna.2008.09.017
Google Scholar
[3]
Liao, L. D., Chao, C. P., Huang, C. W. & Chiu, C. W.: DC dynamic and static pull-in predictions and analysis for electrostatically actuated clamped circular micro-plates based on a continuous model. J. Micromech. Microeng. 20 : 025013. (2010).
DOI: 10.1088/0960-1317/20/2/025013
Google Scholar
[4]
Liu, C. C. & Chen, C. K.: Modeling and Simulation of Nonlinear Microelectromechanical Circular Plate. Smart Science 1 (1): 59–63. (2013).
Google Scholar
[5]
Liu, C. C. & Lo, C. Y.: Numerical analysis of entropy generation in mixed-convection MHD flow in vertical channel. International Communications in Heat and Mass Transfer 39 (9): 1354–1359. (2012).
DOI: 10.1016/j.icheatmasstransfer.2012.08.001
Google Scholar
[6]
Niessner, M., Schrag, G., Iannacci, J. & Wachutka, G.: Macromodel-based simulation and measurement of the dynamic pull-in of viscously damped RF-MEMS switches. Sensors and Actuators A 172: 269–279. (2011).
DOI: 10.1016/j.sna.2011.04.046
Google Scholar
[7]
Vogl, G. W. V. & Nayfeh, A.: A reduced-order model for electrically actuated clamped circular plates. J. Micromech. Microeng 15: 684–690. (2005)P.G. Clem, M. Rodriguez, J.A. Voigt and C.S. Ashley, U.S. Patent 6, 231, 666. (2001).
DOI: 10.1088/0960-1317/15/4/002
Google Scholar
[7]
Vogl, G. W. V. & Nayfeh, A. A reduced-order model for electrically actuated clamped circular plates. J. Micromech. Microeng 15: 684–690. (2005) Information on http: /www. weld. labs. gov. cn.
DOI: 10.1088/0960-1317/15/4/002
Google Scholar