Seeded Porous Silicon Preparation as a Substrate in the Growth of ZnO Nanostructures

Article Preview

Abstract:

In this work, seeded porous silicon (PSi) was used as a substrate in the growth of ZnO nanostructures. PSi was prepared by electrochemical etching method. ZnO thin films as seeded were deposited via sol-gel spin coating method. ZnO nanostructures were grown on seeded PSi using hydrothermal immersion method. In order to study the effect of post-heat treatment on the substrate, post annealing temperature were varied in the range of 300 to 700 °C. The FESEM results shows ZnO thin film composed of nanoparticles were distributed over the PSi surface. Based on AFM characterization, the smoothest surface was produced at post annealing temperature of 500 °C. There are two different peaks appeared in PL characterization. The peak in near-UV range is belonging to ZnO thin films while a broad peak in visible range can be attributed to ZnO defects and PSi surface. In addition, FESEM, XRD and PL were used to characterize the ZnO nanostructures. The FESEM results revealed ZnO nano-flower were successfully grown on seeded PSi. Hexagonal wurtzite of ZnO with dominated by the plane (100), (002), and (101) was found by XRD characterization. Two different peaks in UV range and visible range can be attributed to ZnO nano-flower and various defects of ZnO, respectively.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] Mamat M.H., Khusaimi Z., Zahidi M.M., and Mahmood M.R. Performance of an Ultraviolet Photoconductive Sensor Using Well-Aligned Aluminium-Doped Zinc-Oxide Nanorod Arrays Annealed in an Air and Oxygen Environment, Japanese Journal of Applied Physics, 50 (6) (2011).

DOI: 10.1143/jjap.50.06gf05

Google Scholar

[2] Baek S. -H., Kim S. -B., Shin J. -K., and Hyun Kim J. Preparation of hybrid silicon wire and planar solar cells having ZnO antireflection coating by all-solution processes, Solar Energy Materials and Solar Cells, 96 (2012) 251-256.

DOI: 10.1016/j.solmat.2011.10.007

Google Scholar

[3] Kim M.S., Yim K.G., Kim S., Nam G., and Leem J. -Y. White light emission from nano-fibrous ZnO thin films/porous silicon nanocomposite, Journal of Sol-Gel Science and Technology, 59 (2) (2011) 364-370.

DOI: 10.1007/s10971-011-2513-9

Google Scholar

[4] Rouhi J., Alimanesh M., Mahmud S., Dalvand R.A., Raymond Ooi C.H., and Rusop M. A novel method for synthesis of well-aligned hexagonal cone-shaped ZnO nanostructures in field emission applications, Materials Letters, 125 (0) (2014) 147-150.

DOI: 10.1016/j.matlet.2014.03.183

Google Scholar

[5] Rouhi J., Alimanesh M., Dalvand R., Ooi C.H.R., Mahmud S., and Mahmood M.R. Optical properties of well-aligned ZnO nanostructure arrays synthesized by an electric field-assisted aqueous solution method, Ceramics International, 40 (7, Part B) (2014).

DOI: 10.1016/j.ceramint.2014.03.157

Google Scholar

[6] Rouhi J., Mahmud S., Naderi N., Ooi C.R., and Mahmood M.R. Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnO nanorods, Nanoscale Research Letters, 8 (1) (2013) 1-6.

DOI: 10.1186/1556-276x-8-364

Google Scholar

[7] Cui L., Zhang H. -Y., Wang G. -G., Yang F. -X., Kuang X. -P., Sun R., and Han J. -C. Effect of annealing temperature and annealing atmosphere on the structure and optical properties of ZnO thin films on sapphire (0001) substrates by magnetron sputtering, Applied Surface Science, 258 (7) (2012).

DOI: 10.1016/j.apsusc.2011.10.076

Google Scholar

[8] Lan S.M., Uen W.Y., Chan C.E., Chang K.J., Hung S.C., Li Z.Y., Yang T.N., Chiang C.C., Huang P.J., Yang M.D., Chi G.C., and Chang C.Y. Morphology and optical properties of zinc oxide thin films grown on Si (100) by metal-organic chemical vapor deposition, Journal of Materials Science: Materials in Electronics, 20 (S1) (2008).

DOI: 10.1007/s10854-008-9664-7

Google Scholar

[9] Eswar K.A., Rouhi J., Husairi F.S., Dalvand R., Alrokayan S.A.H., Khan H.A., Rusop Mahmood M., and Abdullah S. Hydrothermal growth of flower-like ZnO nanostructures on porous silicon substrate, Journal of Molecular Structure, 1074 (0) (2014).

DOI: 10.1016/j.molstruc.2014.05.067

Google Scholar

[10] Eswar K.A., Azlinda A., Husairi F.S., Rusop M., and Abdullah S. Post Annealing Effect on Thin Film Composed ZnO Nano-particles on Porous Silicon, Nano Bulletin, 2 (2) (2013) 130212(1-6).

DOI: 10.4028/www.scientific.net/amr.701.167

Google Scholar

[11] Ko Y.H., Leem J.W., and Yu J.S. Controllable synthesis of periodic flower-like ZnO nanostructures on Si subwavelength grating structures, Nanotechnology, 22 (20) (2011) 205604.

DOI: 10.1088/0957-4484/22/20/205604

Google Scholar

[12] Eswar K., Azlinda A.A., Husairi F., Rusop M., and Abdullah S. Synthesis of ZnO Thin Film on Porous Silicon by Spin Coating in Various Low Molarities Precursor, Advanced Materials Research, 701 (2013) 167-171.

DOI: 10.4028/www.scientific.net/amr.701.167

Google Scholar

[13] Eswar K.A., Ab Aziz A., Rusop Mahmood M., and Abdullah S. Surface Morphology of Seeded Nanostructured ZnO on Silicon by Sol-Gel Technique, Advanced Materials Research, 667 (2013) 265-271.

DOI: 10.4028/www.scientific.net/amr.667.265

Google Scholar

[14] Eswar K.A., Husairi H.F., Rusop M., and Abdullah S. ZnO nanostructures on different silicon-based substrate via simple sol-gel immersion method, Int. J. Microstructure and Materials Properties, 8 (6) (2013) 478-487.

DOI: 10.1504/ijmmp.2013.059482

Google Scholar

[15] Varnamkhasti M.G., Fallah H.R., and Zadsar M. Effect of heat treatment on characteristics of nanocrystalline ZnO films by electron beam evaporation, Vacuum, 86 (7) (2012) 871-875.

DOI: 10.1016/j.vacuum.2011.03.017

Google Scholar

[16] Min S.K., Kwang G.Y., Jae-Young L., Soaram K., Giwoong N., Dong-Yul L., Jin S.K., and Jong S.K. Effects of Annealing Temperature on the Structural and the Optical Properties of ZnO Thin Films Grown on Porous Silicon by Using Plasma-assisted Molecular Beam Epitaxy, Journal of the Korean Physical Society, 59 (3) (2011).

DOI: 10.3938/jkps.59.2343

Google Scholar

[17] Callister W.D., Material Science And Engineering: An Introduction, 7th ed.: John Wiley and Son (Asia) Pte. Ltd, (2007).

Google Scholar

[18] Eswar K.A., Rouhi J., Husairi H.F., Rusop M., and Abdullah S. Annealing Heat Treatment of ZnO Nanoparticles Grown on Porous Si Substrate Using Spin-Coating Method, Advances in Materials Science and Engineering, 2014 (2014) 6.

DOI: 10.1155/2014/796759

Google Scholar

[19] Neouze M. -A. Nanoparticle assemblies: main synthesis pathways and brief overview on some important applications, Journal of Materials Science, 48 (21) (2013) 7321-7349.

DOI: 10.1007/s10853-013-7542-z

Google Scholar

[20] Huang X.L., Ma S.Y., Ma L.G., Bian H.Q., and Su C. Microstructure and optical properties of ZnO/porous silicon nanocomposite films, Physica E: Low-dimensional Systems and Nanostructures, 44 (1) (2011) 190-195.

DOI: 10.1016/j.physe.2011.08.013

Google Scholar

[21] Min S.K., Kwang G.Y., Jae-Young L., Soaram K., Giwoong N., Do Y.K., Sung-O K., Dong-Yul L., Jin S.K., and Jong S.K. Nanocrystalline ZnO Thin Films Grown on Porous Silicon by Sol-gel Method and Effects of Post-annealing, Journal of the Korean Physical Society, 59 (2) (2011).

DOI: 10.3938/jkps.59.346

Google Scholar

[22] Hsu H.C., Cheng C.S., Chang C.C., Yang S., Chang C.S., and Hsieh W.F. Orientation-enhanced growth and optical properties of ZnO nanowires grown on porous silicon substrates, Nanotechnology, 16 (2) (2005) 297-301.

DOI: 10.1088/0957-4484/16/2/021

Google Scholar

[23] Abdulgafour H., Yam F., Hassan Z., Al-Heuseen K., and Jawad M. ZnO nanocoral reef grown on porous silicon substrates without catalyst, Journal of Alloys and Compounds, 509 (18) (2011) 5627-5630.

DOI: 10.1016/j.jallcom.2011.02.100

Google Scholar

[24] Gao X., Li X., and Yu W. Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex, The Journal of Physical Chemistry B, 109 (3) (2005) 1155-1161.

DOI: 10.1021/jp046267s

Google Scholar

[25] Egelhaaf H. -J. and Oelkrug D. Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO, Journal of crystal growth, 161 (1) (1996) 190-194.

DOI: 10.1016/0022-0248(95)00634-6

Google Scholar

[26] Vanheusden K., Warren W., Seager C., Tallant D., Voigt J., and Gnade B. Mechanisms behind green photoluminescence in ZnO phosphor powders, Journal of Applied Physics, 79 (10) (1996) 7983-7990.

DOI: 10.1063/1.362349

Google Scholar

[27] Aguilar C.A., Haight R., Mavrokefalos A., Korgel B.A., and Chen S. Probing electronic properties of molecular engineered zinc oxide nanowires with photoelectron spectroscopy, ACS nano, 3 (10) (2009) 3057-3062.

DOI: 10.1021/nn900777k

Google Scholar