[1]
R. C. Pawar, J. S. Shaikh, A. A. Babar, P. M. Dhere, and P. S. Patil, Aqueous chemical growth of ZnO disks, rods, spindles and flowers: pH dependency and photoelectrochemical properties, Solar Energy, vol. 85, pp.1119-1127, (2011).
DOI: 10.1016/j.solener.2011.03.008
Google Scholar
[2]
Z. Z. Ye, J. G. Lu, Y. Z. Zhang, Y. J. Zeng, L. L. Chen, F. Zhuge, G. D. Yuan, H. P. He, L. P. Zhu, J. Y. Huang, and B. H. Zhao, ZnO light-emitting diodes fabricated on Si substrates with homobuffer layers, Applied Physics Letters, vol. 91, pp.503-505, (2007).
DOI: 10.1063/1.2783262
Google Scholar
[3]
Y. Cao, P. Hu, W. Pan, Y. Huang, and D. Jia, Methanal and xylene sensors based on ZnO nanoparticles and nanorods prepared by room-temperature solid-state chemical reaction, Sensors and Actuators B: Chemical, vol. 134, pp.462-466, (2008).
DOI: 10.1016/j.snb.2008.05.026
Google Scholar
[4]
H. -C. Hsu, C. -S. Cheng, C. -C. Chang, S. Yang, C. -S. Chang, and W. -F. Hsieh, Orientation-enhanced growth and optical properties of ZnO nanowires grown on porous silicon substrates, Nanotechnology, vol. 16, p.297–301, (2005).
DOI: 10.1088/0957-4484/16/2/021
Google Scholar
[5]
J. W. Jie, G. Wang, Q. Chen, Y. Han, X. Wang, X. Hou, J. G, Synthesis and Characterization of Aligned ZnO Nanorods on Porous Aluminum Oxide Template, Journal of Physical Chemistry B, vol. 108, pp.11976-11980, (2004).
DOI: 10.1021/jp048974r
Google Scholar
[6]
Z. L. Wang, Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing, Applied Physics A: Materials Science & Processing, vol. 88, pp.7-15, (2007).
DOI: 10.1007/s00339-007-3942-8
Google Scholar
[7]
J. W. Zhao, L. R. Qin, Z. D. Xiao, and L. D. Zhang, Synthesis and characterization of novel flower-shaped ZnO nanostructures, Materials Chemistry and Physics, vol. 105, pp.194-198, (2007).
DOI: 10.1016/j.matchemphys.2007.04.031
Google Scholar
[8]
H. Kou, X. Zhang, Y. Du, W. Ye, S. Lin, and C. Wang, Electrochemical synthesis of ZnO nanoflowers and nanosheets on porous Si as photoelectric materials, Applied Surface Science, vol. 257, pp.4643-4649, (2011).
DOI: 10.1016/j.apsusc.2010.12.108
Google Scholar
[9]
H. Cai, H. Shen, Y. Yin, L. Lu, J. Shen, and Z. Tang, The effects of porous silicon on the crystalline properties of ZnO thin films, Journal of Physics and Chemistry of Solids, vol. 70, pp.967-971, (2009).
DOI: 10.1016/j.jpcs.2009.05.004
Google Scholar
[10]
S. Amizam, H. A. Rafaie, M. H. Mamat, Z. Khusaimi, M. Z. Sahdan, S. Abdullah, and M. Rusop, Study On Structural And Optical Properties On The Effect of Deposition Time on The ZnO Nanorods Grown On Porous Silicon Substrate, Solid State Science and Technology, vol. 18, pp.343-348, (2010).
DOI: 10.1063/1.3160231
Google Scholar
[11]
F. S. Husairi, S. A. M. Zobir, M. Rusop, and S. Abdullah, Electrical properties of carbon nanotubes synthesis by double furnace thermal-CVD technique at different temperatures on porous silicon template, IOP Conference Series: Materials Science and Engineering, vol. 46, p.012023, (2013).
DOI: 10.1088/1757-899x/46/1/012023
Google Scholar
[12]
F. S. Husairi, J. Rouhi, K. A. Eswar, A. Z. Zainurul, M. Rusop, and S. Abdullah, Electrochemical impedance spectroscopy analysis of porous silicon prepared by photo-electrochemical etching: current density effect, Applied Physics A, pp.1-6, 2014/05/01 (2014).
DOI: 10.1007/s00339-014-8416-1
Google Scholar
[13]
E. Bacaksiz, S. Yılmaz, M. Parlak, A. Varilci, and M. Altunbaş, Effects of annealing temperature on the structural and optical properties of ZnO hexagonal pyramids, Journal of Alloys and Compounds, vol. 478, pp.367-370, (2009).
DOI: 10.1016/j.jallcom.2008.11.025
Google Scholar
[14]
G. Kenanakis, M. Androulidaki, E. Koudoumas, C. Savvakis, and N. Katsarakis, Photoluminescence of ZnO nanostructures grown by the aqueous chemical growth technique, Superlattices and Microstructures, vol. 42, pp.473-478, (2007).
DOI: 10.1016/j.spmi.2007.04.037
Google Scholar
[15]
S. A. Kamaruddin, K. Y. Chan, M. Z. Sahdan, M. Rusop, and H. Saim, ZnO microstructures and nanostructures prepared by sol-gel hydrothermal technique, Journal Nanoscience Nanotechnology, vol. 10, pp.5618-22, (2010).
DOI: 10.1166/jnn.2010.2444
Google Scholar
[16]
Z. Khusaimi, S. Amizam, M. H. Mamat, M. Z. Sahdan, M. K. Ahmad, N. Abdullah, and M. Rusop, Controlled Growth of Zinc Oxide Nanorods by Aqueous-Solution Method, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, vol. 40, pp.190-194, (2010).
DOI: 10.1080/15533171003629147
Google Scholar
[17]
S. N. Bai, H. H. Tsai, and T. Y. Tseng, Structural and optical properties of Al-doped ZnO nanowires synthesized by hydrothermal method, Thin Solid Films, vol. 516, pp.155-158, (2007).
DOI: 10.1016/j.tsf.2007.06.096
Google Scholar
[18]
D. G. Yarkin, Impedance of humidity sensitive metal/porous silicon/n-Si structures, Sensors and Actuators A Physical, vol. 107, pp.1-6, (2003).
DOI: 10.1016/s0924-4247(03)00231-0
Google Scholar