The Fabrication of PSi/ZnO Nanostructures as Chemical Sensors for the Detection of Ethanol in Solution Using an Electrochemical Impedance Technique

Article Preview

Abstract:

In this work, porous silicon (PSi) was prepared by electrochemical etching and used as a template for ZnO nanostructures. ZnO nanostructures were grown using the catalytic immersion method at different molar ratio concentrations of the precursor and stabilizer. The ZnO nanostructures were analyzed using FESEM and photoluminescence (PL) spectrometry, before tested with ethanol solution. The population of the ZnO nanostructures on PSi increased with the concentration and followed the surface morphology of PSi. The photoluminescence spectra of ZnO show two dominant peaks in the UV and visible regions. When the concentration of the precursor increased, the PL peaks in the visible region (630 nm) shifted towards the blue region of the spectrum. The PSi/ZnO nanostructure chemical sensor has a large surface area, reversing sensor and fast response in ethanol. The performance of the sensor was affected by the morphology and defect structures of the ZnO nanostructures layer.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] R. C. Pawar, J. S. Shaikh, A. A. Babar, P. M. Dhere, and P. S. Patil, Aqueous chemical growth of ZnO disks, rods, spindles and flowers: pH dependency and photoelectrochemical properties, Solar Energy, vol. 85, pp.1119-1127, (2011).

DOI: 10.1016/j.solener.2011.03.008

Google Scholar

[2] Z. Z. Ye, J. G. Lu, Y. Z. Zhang, Y. J. Zeng, L. L. Chen, F. Zhuge, G. D. Yuan, H. P. He, L. P. Zhu, J. Y. Huang, and B. H. Zhao, ZnO light-emitting diodes fabricated on Si substrates with homobuffer layers, Applied Physics Letters, vol. 91, pp.503-505, (2007).

DOI: 10.1063/1.2783262

Google Scholar

[3] Y. Cao, P. Hu, W. Pan, Y. Huang, and D. Jia, Methanal and xylene sensors based on ZnO nanoparticles and nanorods prepared by room-temperature solid-state chemical reaction, Sensors and Actuators B: Chemical, vol. 134, pp.462-466, (2008).

DOI: 10.1016/j.snb.2008.05.026

Google Scholar

[4] H. -C. Hsu, C. -S. Cheng, C. -C. Chang, S. Yang, C. -S. Chang, and W. -F. Hsieh, Orientation-enhanced growth and optical properties of ZnO nanowires grown on porous silicon substrates, Nanotechnology, vol. 16, p.297–301, (2005).

DOI: 10.1088/0957-4484/16/2/021

Google Scholar

[5] J. W. Jie, G. Wang, Q. Chen, Y. Han, X. Wang, X. Hou, J. G, Synthesis and Characterization of Aligned ZnO Nanorods on Porous Aluminum Oxide Template, Journal of Physical Chemistry B, vol. 108, pp.11976-11980, (2004).

DOI: 10.1021/jp048974r

Google Scholar

[6] Z. L. Wang, Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing, Applied Physics A: Materials Science & Processing, vol. 88, pp.7-15, (2007).

DOI: 10.1007/s00339-007-3942-8

Google Scholar

[7] J. W. Zhao, L. R. Qin, Z. D. Xiao, and L. D. Zhang, Synthesis and characterization of novel flower-shaped ZnO nanostructures, Materials Chemistry and Physics, vol. 105, pp.194-198, (2007).

DOI: 10.1016/j.matchemphys.2007.04.031

Google Scholar

[8] H. Kou, X. Zhang, Y. Du, W. Ye, S. Lin, and C. Wang, Electrochemical synthesis of ZnO nanoflowers and nanosheets on porous Si as photoelectric materials, Applied Surface Science, vol. 257, pp.4643-4649, (2011).

DOI: 10.1016/j.apsusc.2010.12.108

Google Scholar

[9] H. Cai, H. Shen, Y. Yin, L. Lu, J. Shen, and Z. Tang, The effects of porous silicon on the crystalline properties of ZnO thin films, Journal of Physics and Chemistry of Solids, vol. 70, pp.967-971, (2009).

DOI: 10.1016/j.jpcs.2009.05.004

Google Scholar

[10] S. Amizam, H. A. Rafaie, M. H. Mamat, Z. Khusaimi, M. Z. Sahdan, S. Abdullah, and M. Rusop, Study On Structural And Optical Properties On The Effect of Deposition Time on The ZnO Nanorods Grown On Porous Silicon Substrate, Solid State Science and Technology, vol. 18, pp.343-348, (2010).

DOI: 10.1063/1.3160231

Google Scholar

[11] F. S. Husairi, S. A. M. Zobir, M. Rusop, and S. Abdullah, Electrical properties of carbon nanotubes synthesis by double furnace thermal-CVD technique at different temperatures on porous silicon template, IOP Conference Series: Materials Science and Engineering, vol. 46, p.012023, (2013).

DOI: 10.1088/1757-899x/46/1/012023

Google Scholar

[12] F. S. Husairi, J. Rouhi, K. A. Eswar, A. Z. Zainurul, M. Rusop, and S. Abdullah, Electrochemical impedance spectroscopy analysis of porous silicon prepared by photo-electrochemical etching: current density effect, Applied Physics A, pp.1-6, 2014/05/01 (2014).

DOI: 10.1007/s00339-014-8416-1

Google Scholar

[13] E. Bacaksiz, S. Yılmaz, M. Parlak, A. Varilci, and M. Altunbaş, Effects of annealing temperature on the structural and optical properties of ZnO hexagonal pyramids, Journal of Alloys and Compounds, vol. 478, pp.367-370, (2009).

DOI: 10.1016/j.jallcom.2008.11.025

Google Scholar

[14] G. Kenanakis, M. Androulidaki, E. Koudoumas, C. Savvakis, and N. Katsarakis, Photoluminescence of ZnO nanostructures grown by the aqueous chemical growth technique, Superlattices and Microstructures, vol. 42, pp.473-478, (2007).

DOI: 10.1016/j.spmi.2007.04.037

Google Scholar

[15] S. A. Kamaruddin, K. Y. Chan, M. Z. Sahdan, M. Rusop, and H. Saim, ZnO microstructures and nanostructures prepared by sol-gel hydrothermal technique, Journal Nanoscience Nanotechnology, vol. 10, pp.5618-22, (2010).

DOI: 10.1166/jnn.2010.2444

Google Scholar

[16] Z. Khusaimi, S. Amizam, M. H. Mamat, M. Z. Sahdan, M. K. Ahmad, N. Abdullah, and M. Rusop, Controlled Growth of Zinc Oxide Nanorods by Aqueous-Solution Method, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, vol. 40, pp.190-194, (2010).

DOI: 10.1080/15533171003629147

Google Scholar

[17] S. N. Bai, H. H. Tsai, and T. Y. Tseng, Structural and optical properties of Al-doped ZnO nanowires synthesized by hydrothermal method, Thin Solid Films, vol. 516, pp.155-158, (2007).

DOI: 10.1016/j.tsf.2007.06.096

Google Scholar

[18] D. G. Yarkin, Impedance of humidity sensitive metal/porous silicon/n-Si structures, Sensors and Actuators A Physical, vol. 107, pp.1-6, (2003).

DOI: 10.1016/s0924-4247(03)00231-0

Google Scholar