[1]
F. Bayansal, et al., Growth of homogenous CuO nano-structured thin films by a simple solution method, Journal of Alloys and Compounds, vol. 509, pp.2094-2098, (2011).
DOI: 10.1016/j.jallcom.2010.10.146
Google Scholar
[2]
F. Bayansal, et al., Nano-structured CuO films prepared by simple solution methods: Plate-like, needle-like and network-like architectures, Ceramics International, vol. 38, pp.1859-1866, (2012).
DOI: 10.1016/j.ceramint.2011.10.011
Google Scholar
[3]
A. Y. Oral, et al., The preparation of copper(II) oxide thin films and the study of their microstructures and optical properties, Materials Chemistry and Physics, vol. 83, pp.140-144, (2004).
DOI: 10.1016/j.matchemphys.2003.09.015
Google Scholar
[4]
S. C. Ray, Preparation of copper oxide thin film by the sol–gel-like dip technique and study of their structural and optical properties, Solar Energy Materials and Solar Cells, vol. 68, pp.307-312, (2001).
DOI: 10.1016/s0927-0248(00)00364-0
Google Scholar
[5]
Q. Zhang, et al., CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications, Progress in Materials Science, vol. 60, pp.208-337, (2014).
DOI: 10.1016/j.pmatsci.2013.09.003
Google Scholar
[6]
J. Zhu, et al., Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method, Materials Letters, vol. 58, pp.3324-3327, (2004).
DOI: 10.1016/j.matlet.2004.06.031
Google Scholar
[7]
J. T. Chen, et al., CuO nanowires synthesized by thermal oxidation route, Journal of Alloys and Compounds, vol. 454, pp.268-273, (2008).
Google Scholar
[8]
V. R. Katti, et al., Mechanism of drifts in H2S sensing properties of SnO2: CuO composite thin film sensors prepared by thermal evaporation, Sensors and Actuators B: Chemical, vol. 96, pp.245-252, (2003).
DOI: 10.1016/s0925-4005(03)00532-x
Google Scholar
[9]
Q. Liu, et al., Hydrothermal synthesis of CoFe2O4 nanoplatelets and nanoparticles, Materials Chemistry and Physics, vol. 108, pp.269-273, (2008).
Google Scholar
[10]
J. Yang, et al., A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays, Talanta, vol. 82, pp.25-33, (2010).
DOI: 10.1016/j.talanta.2010.03.047
Google Scholar
[11]
Z. Yang, et al., Controlled synthesis of CuO nanostructures by a simple solution route, Journal of Solid State Chemistry, vol. 180, pp.1390-1396, (2007).
DOI: 10.1016/j.jssc.2007.02.008
Google Scholar
[12]
L. Cheng, et al., Preparation, characterization, and electrochemical application of mesoporous copper oxide, Materials Research Bulletin, vol. 45, pp.235-239, (2010).
DOI: 10.1016/j.materresbull.2009.08.001
Google Scholar
[13]
K. Lew, Chemical reactions: Infobase Publishing, (2009).
Google Scholar
[14]
M. R. Johan, et al., Annealing effects on the properties of copper oxide thin films prepared by chemical deposition, Int. J. Electrochem. Sci, vol. 6, pp.6094-6104, (2011).
DOI: 10.1016/s1452-3981(23)19665-9
Google Scholar