[1]
J. Son, G. Niu, B. Yang, D. Hwang and D. Kang: Development of smart sensors system for machine fault diagnosis, Expert Systems with Applications Vol. 36 (2009), pp.11981-11991.
DOI: 10.1016/j.eswa.2009.03.069
Google Scholar
[2]
R. Matsuzaki and A. Todoroki: Passive wireless strain monitoring of actual tire using capacitance-resistance change and multiple spectral features, Sensors and Actuators A Vol. 126 (2006), pp.277-286.
DOI: 10.1016/j.sna.2005.10.029
Google Scholar
[3]
C. Ferreira, P. Ventura, C. Grinde, R. Morais, A. Valente, C. Neves and M.J.C.S. Reis: A novel monolithic silicon sensor for measuring acceleration, pressure and temperature on a shock absorber, Procedia Chemistry Vol. 1 (2009), pp.88-91.
DOI: 10.1016/j.proche.2009.07.022
Google Scholar
[4]
L. Zhining, W. Peng, M. Jianmin, L. Jianwei and T. Fei: Vehicle fault diagnose based on smart sensor, Physics Procedia Vol. 24 (2012), pp.1060-1067.
DOI: 10.1016/j.phpro.2012.02.158
Google Scholar
[5]
X. Desforges and B. Archimède: Multi-agent framework based on smart sensors/actuators for machine tools control and monitoring, Engineering Applications of Artificial Intelligence Vol. 19 (2006) 641–655.
DOI: 10.1016/j.engappai.2006.03.006
Google Scholar
[6]
M.R. Kirchhoff, C. Boese, J. Güttler, M. Feldmann and S. Büttgenbach: Innovative high-precision position sensor systems for robotic and automotive applications, Procedia Chemistry Vol. 1 (2009), pp.501-504.
DOI: 10.1016/j.proche.2009.07.125
Google Scholar
[7]
K. Moreau and V. Rouet: Presentation of platforms for wireless advanced networks of sensors for aeronautics application, Integration Issues of Miniaturized Systems – MOMS, MOEMS, ICS and Electronic Components (SSI), 2nd European Conference & Exhibition on (2008).
Google Scholar
[8]
E.Y. Song and K. Lee: Understanding IEEE 1451 – networked smart transducer interface standard, IEEE Instrumentation & Measurement Magazine (2008), pp.11-17.
DOI: 10.1109/mim.2008.4483728
Google Scholar
[9]
J. Ponmozhi, C. Frias, T. Marques and O. Frazão: Smart sensors/actuators for biomedical applications: review, Measurement Vol. 45 (2012), pp.1675-1688.
DOI: 10.1016/j.measurement.2012.02.006
Google Scholar
[10]
A. Depari, A. Flammini, E. Sisinni and A. Vezzoli: A wearable smartphone-based system for electrocardiogram acquisition, Proceedings of the IEEE International Symposium on Medical Measurements and Applications (2014), pp.54-59.
DOI: 10.1109/memea.2014.6860030
Google Scholar
[11]
Z.Q. Ding, Z.Q. Luo, A. Causo, I.M. Chen, K.X. Yue, S.H. Yeo and K.V. Ling: Inertia sensor-based guidance system for upper limb posture correction, Medical Engineering & Physics Vol. 35 (2013), pp.269-276.
DOI: 10.1016/j.medengphy.2011.09.002
Google Scholar
[12]
H. Brock, G. Schmitz, J. Baumann and A.O. Effenberg: If motion sounds: movement sonification based on inertial sensor data, Procedia Engineering Vol. 34 (2012), pp.556-561.
DOI: 10.1016/j.proeng.2012.04.095
Google Scholar
[13]
A.U. Alahakone and S.M.N. Arosha Senanayake: A real-time system with assistive feedback for postural control in rehabilitation, IEEE-ASME Transactions on Mechactronics Vol. 15 (2010), pp.226-233.
DOI: 10.1109/tmech.2010.2041030
Google Scholar
[14]
R. Zhu and Z. Zhou: A real-time articulated human motion tracking using triaxis inertia/magnetic sensors package, IEEE Transactions on Neural Systems and Rehabilitation Engineering Vol. 12 (2004), pp.295-302.
DOI: 10.1109/tnsre.2004.827825
Google Scholar
[15]
R. Moe-Nilssen and J. L Helbostad: Estimation of gait cycle characteristics by trunk accelerometry, Journal of Biomechanics Vol. 37 (2004), pp.121-126.
DOI: 10.1016/s0021-9290(03)00233-1
Google Scholar
[16]
S.S. Lobodzinski and M.M. Laks: New devices for very long-term ECG monitoring, Journal of Cardiology Vol. 19 (2012), pp.210-214.
DOI: 10.5603/cj.2012.0039
Google Scholar
[17]
T. Reinvuo, M. Hannula, H. Sorvoja, E. Alasaarela and R. Myllylä: Measurement of respiratory rate with high-resolution accelerometer and EMFit pressure Sensor, Proceedings of the IEEE Sensors Applications Sysmposium (2006), pp.192-195.
DOI: 10.1109/sas.2006.1634270
Google Scholar
[18]
D. Aujesky, T.E. Auble, D.M. Yealy, R.A. Stone, D.S. Obrosky, T.P. Meehan, L.G. Graff, J.M. Fine and M.J. Fine: Prospective comparison of three validated prediction rules for prognosis in community-acquired pneumonia, American Journal of Medicine Vol. 118 (2005).
DOI: 10.1016/j.amjmed.2005.01.006
Google Scholar
[19]
E. Sardini, M. Serpelloni and M. Ometto: Smart vest for posture monitoring in rehabilitation exercises, Proceedings of the IEEE Sensors Applications Symposium (2012).
DOI: 10.1109/sas.2012.6166300
Google Scholar
[20]
P. Jourand, H. De Clercq, R. Corthout and R. Puers: Textile integrated breathing and ECG monitoring system, Proceedings of the Eurosensors XXIII Conference (2009), pp.722-725.
DOI: 10.1016/j.proche.2009.07.180
Google Scholar
[21]
M. Borghetti, E. Sardini and M. Serpelloni: Sensorized glove for measuring hand finger flexion for rehabilitation purposes, IEEE Transactions on Instrumentation and Measurement Vol. 62 (2013), pp.3308-3314.
DOI: 10.1109/tim.2013.2272848
Google Scholar
[22]
C. Huang, C. Shen, C. Tang and S. Chang: A wearable yarn-based piezo-resistive sensor, Sensors and Actuators A Vol. 141 (2008), pp.396-403.
DOI: 10.1016/j.sna.2007.10.069
Google Scholar
[23]
A. Dionisi, E. Sardini and M. Serpelloni: Printed sensors on textiles for biomedical applications, Sensors and Microsystems Vol. 268 (2014), pp.439-442.
DOI: 10.1007/978-3-319-00684-0_84
Google Scholar
[24]
D. son, J. Lee, S. Qiao, R. Ghaffari, J. Kim, J.E. Lee, C. Song, S.J. Kim, D.J. Lee, S.W. Jun, S. Yang, M. Park, J. Shin, K. Do, M. Lee, K. Kang, C.S. Hwang, N. Lu, T. Hyeon and D. Kim: Multifunctional wearable devices for diagnosis and therapy of movement disorders, Nature Nanotechnology, Advance online publication (2014).
DOI: 10.1038/nnano.2014.38
Google Scholar
[25]
A. Cadei, A. Dionisi, E. Sardini and M. Serpelloni: Kinetic and thermal energy harvesters for implantable medical devices and biomedical autonomous sensors, Measurement Science and Technology Vol. 25 (2014), pp.1-14.
DOI: 10.1088/0957-0233/25/1/012003
Google Scholar
[26]
D. Halperin, T. Kohno, T.S. Heydt-Benjamin, K. Fu and W.H. Maisel: Security and privacy for implantable medical devices, IEEE Pervasive Computation Vol. 7 (2008), pp.30-39.
DOI: 10.1109/mprv.2008.16
Google Scholar
[27]
P. Jourand and R. Puers: An autonomous, capacitive sensor based and battery powered internal bladder pressure monitoring system, Procedia Chemistry Vol. 1 (2009), pp.1263-1266.
DOI: 10.1016/j.proche.2009.07.315
Google Scholar
[28]
R. Tan, T. McClure, C.K. Lin, D. Jea, F. Dabiri, T. Massey, M. Sarrafzadeh, M. Srivastava, C.D. Montemagno, P. Schulam and J. Schmidt: Development of a fully implantable wireless pressure monitoring system, Biomedical Microdevices Vol. 11 (2009).
DOI: 10.1007/s10544-008-9232-1
Google Scholar
[29]
K.D. Wise, D.J. Anderson, J.F. Hetke, D.R. Kipke and K. Najafi: Wireless implantable microsystems: high-density electronic interfaces to the nervous system, IEEE Proceedings Vol. 92 (2004), pp.76-97.
DOI: 10.1109/jproc.2003.820544
Google Scholar
[30]
R.R. Harrison, P.T. Watkins, R.J. Kier, R.O. Lovejoy, D.J. Black, B. Greger and F. Solzbacher: A low-power integrated circuit for a wireless 100-electrode neural recording system, IEEE Journal of Solid-State Circuits Vol. 42 (2007), pp.123-133.
DOI: 10.1109/jssc.2006.886567
Google Scholar
[31]
W.C. Stacey and B. Litt: Technology insight: neuroengineering and epilepsy – designing devices for seizure control, Nature Clinical Practice Neurology Vol. 4 (2008), pp.190-201.
DOI: 10.1038/ncpneuro0750
Google Scholar
[32]
A. Grans, M. Axelsson, K. Pitsillides, C. Olson, J. Hojesjo, R.C. Kaufman and J.J. Cech Jr.: A fully implantable multi-channel biotelemetry system for measurement of blood flow and temperature: a first evaluation in the green sturgeon, Hydrobiologia Vol. 619 (2009).
DOI: 10.1007/s10750-008-9578-7
Google Scholar
[33]
C. Chiang, C. K. Lin and M. Ju: An implantable capacitive pressure sensor for biomedical applications, Sensors and Actuators A Vol. 134 (2007), pp.382-388.
DOI: 10.1016/j.sna.2006.06.007
Google Scholar
[34]
A.D. DeHennis and D.W. Kensall: A fully integrated multisite pressure sensor for wireless arterial flow characterization, Journal of Microelectromechanical Systems Vol. 15 (2006), pp.678-685.
DOI: 10.1109/jmems.2006.876668
Google Scholar
[35]
P. Chen, S. Saati, R. Varma, M.S. Humayun and Y. Tai: Wireless intraocular pressure sensing using microfabricated minimally invasive flexible-coiled LC sensor implant, Journal of Microelectromechanical Systems Vol. 19 (2010), pp.721-734.
DOI: 10.1109/jmems.2010.2049825
Google Scholar
[36]
D. Crescini, E. Sardini and M. Serpelloni: Design and test of an autonomous sensor for force measurements in human knee implants, Sensors and Actuators A Vol. 166 (2011), pp.1-8.
DOI: 10.1016/j.sna.2010.12.010
Google Scholar
[37]
H. Chen, M. Liu, J. Cand and Z. Wang: Power harvesting using PZT ceramics embedded in orthopedic implants, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control Vol. 56 (2009), p.2010-(2014).
DOI: 10.1109/tuffc.2009.1277
Google Scholar
[38]
S. Almouahed, M. Gouriou, C. Hamitouche, E. Stindel and C. Roux: Self-powered instrumented knee implant for early detection of postoperative complications, Proceedings of the IEEE Engineering in Medicine & Biology Society Conference (2010).
DOI: 10.1109/iembs.2010.5626199
Google Scholar
[39]
S. Almouahed, M. Gouriou, C. Hamitouche, E. Stindel and C. Roux: The use of piezoceramics as electrical energy harvesters within instrumented knee implant during walking, IEEE/ASME Transactions on Mechatronics Vol. 16 (2011), pp.799-807.
DOI: 10.1109/tmech.2011.2159512
Google Scholar
[40]
C. Lahuec, S. Almouahed, M. Arzel, D. Gupta, C. Hamitouche, M. Jézéquel, E. Stindel and C. Roux: A self-powered telemetry system to estimate the postoperative instability of a knee implant, IEEE Transactions on Biomedical Engineering Vol. 58 (2011).
DOI: 10.1109/tbme.2010.2069099
Google Scholar
[41]
D. Marioli, E. Sardini and M. Serpelloni: An inductive telemetric measurement system for humidity sensing, Measurement Science and Technology Vol. 19 (2008), pp.1-8.
DOI: 10.1088/0957-0233/19/11/115204
Google Scholar
[42]
N.M. Neihart and R.R. Harrison: Micropower circuits for bidirectional wireless telemetry in neural recording applications, IEEE Transactions on Biomedical Engineering Vol. 52 (2005), p.1950-(1959).
DOI: 10.1109/tbme.2005.856247
Google Scholar
[43]
P.D. Mitcheson: Energy harvesting for human wearable and implantable bio-sensors, Proceedings of the IEEE Engineering in Medicine & Biology Society Conference (2010), pp.3432-3436.
DOI: 10.1109/iembs.2010.5627952
Google Scholar
[44]
J. Potkay and K. Brooks: An arterial cuff energy scavenger for implanted microsystems, 2nd International Conference on Bioinformatics and Biomedical Engineering (2008), pp.1580-1583.
DOI: 10.1109/icbbe.2008.723
Google Scholar
[45]
G. Taveggia, J.H. Villafane, F. Vavassori, C. Lecchi, A. Borboni and S. Negrini: Multimodal treatment of distal sensorimotor polyneuropathy in diabetic patients: a randomized controlled clinical trial, Journal of Manipulative and Physiological Therapeutics Vol. 37 (2014).
DOI: 10.1016/j.jmpt.2013.09.007
Google Scholar
[46]
X. Cheng, Y. Zhou, C. Zuo and X. Fan: Design of an upper limb rehabilitation robot based on medical theory, Procedia Engineering Vol. 15 (2011), pp.688-692.
DOI: 10.1016/j.proeng.2011.08.128
Google Scholar
[47]
H.S. Lo and S.Q. Xie: Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects, Medical Engineering & Physics Vol. 34 (2012), pp.261-268.
DOI: 10.1016/j.medengphy.2011.10.004
Google Scholar
[48]
K. Kiguchi and M. Liyanage: A study of a 4DOF upper-limb power-assist intelligent exoskeleton with visual information for perception-assist, IEEE International Conference on Robotics and Automation (2008), pp.3666-3671.
DOI: 10.1109/robot.2008.4543773
Google Scholar
[49]
C. Jacq, B. Lüthi, Th. Maeder, O. Lambercy and R. Gassert: Thick-film multi-DOF force/torque sensor for wrist rehabilitation, Procedia Chemistry Vol. 1 (2009), pp.1267-1270.
DOI: 10.1016/j.proche.2009.07.316
Google Scholar
[50]
A. Hamid, M.N.A. Ab Patar and M.A. Ayub: Force sensor detection and performance evaluation of new active system ankle foot orthosis, Procedia Engineering Vol. 41 (2012), pp.510-515.
DOI: 10.1016/j.proeng.2012.07.205
Google Scholar
[51]
P.R. Troyk, G.R. DeMichele, D.A. Kerns and R.F. Weir: IMES: an implantable myoelectric sensor, Proceedings of the IEEE Engineering in Medicine & Biology Society Conference (2007), pp.1730-1733.
DOI: 10.1109/iembs.2007.4352644
Google Scholar
[52]
Z.S. Zumsteg, C. Kemere, S. O'Driscoll, G. Santhanam, R.E. Ahmed, K.V. Shenoy and T.H. Meng: Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems, IEEE Transactions on Neural Systems & Rehabilitation Vol. 13 (2005).
DOI: 10.1109/tnsre.2005.854307
Google Scholar
[53]
R.W. Teasell and L. Kalra: What's new in stroke rehabilitation, Stroke Vol. 35 (2004), pp.383-385.
DOI: 10.1161/01.str.0000115937.94104.76
Google Scholar
[54]
A. Borboni, R. Faglia and M. Mor: Compliant device for hand rehabilitation of stroke patient, Proceedings of the ASME Engineering Systems Design and Analysis (2014), pp.1-10.
DOI: 10.1115/esda2014-20081
Google Scholar
[55]
R. Raya, R. Ceres, E. Rocon and J.L. Pons: Empowering the autonomy of children with cognitive and physical impairments by inertial head tracking, Procedia Chemistry Vol. 1 (2009), pp.726-729.
DOI: 10.1016/j.proche.2009.07.181
Google Scholar
[56]
D.D. Rowlands, W. Usher, M. McCarthy, R. Leadbetter, J. Ride, L. Casey, H. Green, N. Morris, V. Muthukkumarasamy, E. Laakso and D.A. James: An automated activity monitoring system for rehabilitation, Procedia Engineering Vol. 60 (2013).
DOI: 10.1016/j.proeng.2013.07.034
Google Scholar