The Use of Smart Sensors in Healthcare Applications: Review

Article Preview

Abstract:

Sensors have always represented a fundamental component in most systems which have to guarantee a high reliability and huge performances. Industrial world provides a perfect example. During the last years, such instruments have increased their capabilities, thanks to the integration of functionalities which only certain devices had in the past, reaching a level of smartness which has allowed them to enlarge the range of their applications. One of the most interesting field, that has a great potential of development in the future, regards human healthcare (and rehabilitation in particular), which technology is giving a great contribution for. This paper aims to provide a general view of the exploitation of smart sensors in such domain. After having introduced the conceptual schemes which are the basis for the realization of a smart sensor, different typologies are described, which are utilized in implantable devices, wearable instruments and rehabilitation systems, trying to explain why they are the most suitable for certain applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-41

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Son, G. Niu, B. Yang, D. Hwang and D. Kang: Development of smart sensors system for machine fault diagnosis, Expert Systems with Applications Vol. 36 (2009), pp.11981-11991.

DOI: 10.1016/j.eswa.2009.03.069

Google Scholar

[2] R. Matsuzaki and A. Todoroki: Passive wireless strain monitoring of actual tire using capacitance-resistance change and multiple spectral features, Sensors and Actuators A Vol. 126 (2006), pp.277-286.

DOI: 10.1016/j.sna.2005.10.029

Google Scholar

[3] C. Ferreira, P. Ventura, C. Grinde, R. Morais, A. Valente, C. Neves and M.J.C.S. Reis: A novel monolithic silicon sensor for measuring acceleration, pressure and temperature on a shock absorber, Procedia Chemistry Vol. 1 (2009), pp.88-91.

DOI: 10.1016/j.proche.2009.07.022

Google Scholar

[4] L. Zhining, W. Peng, M. Jianmin, L. Jianwei and T. Fei: Vehicle fault diagnose based on smart sensor, Physics Procedia Vol. 24 (2012), pp.1060-1067.

DOI: 10.1016/j.phpro.2012.02.158

Google Scholar

[5] X. Desforges and B. Archimède: Multi-agent framework based on smart sensors/actuators for machine tools control and monitoring, Engineering Applications of Artificial Intelligence Vol. 19 (2006) 641–655.

DOI: 10.1016/j.engappai.2006.03.006

Google Scholar

[6] M.R. Kirchhoff, C. Boese, J. Güttler, M. Feldmann and S. Büttgenbach: Innovative high-precision position sensor systems for robotic and automotive applications, Procedia Chemistry Vol. 1 (2009), pp.501-504.

DOI: 10.1016/j.proche.2009.07.125

Google Scholar

[7] K. Moreau and V. Rouet: Presentation of platforms for wireless advanced networks of sensors for aeronautics application, Integration Issues of Miniaturized Systems – MOMS, MOEMS, ICS and Electronic Components (SSI), 2nd European Conference & Exhibition on (2008).

Google Scholar

[8] E.Y. Song and K. Lee: Understanding IEEE 1451 – networked smart transducer interface standard, IEEE Instrumentation & Measurement Magazine (2008), pp.11-17.

DOI: 10.1109/mim.2008.4483728

Google Scholar

[9] J. Ponmozhi, C. Frias, T. Marques and O. Frazão: Smart sensors/actuators for biomedical applications: review, Measurement Vol. 45 (2012), pp.1675-1688.

DOI: 10.1016/j.measurement.2012.02.006

Google Scholar

[10] A. Depari, A. Flammini, E. Sisinni and A. Vezzoli: A wearable smartphone-based system for electrocardiogram acquisition, Proceedings of the IEEE International Symposium on Medical Measurements and Applications (2014), pp.54-59.

DOI: 10.1109/memea.2014.6860030

Google Scholar

[11] Z.Q. Ding, Z.Q. Luo, A. Causo, I.M. Chen, K.X. Yue, S.H. Yeo and K.V. Ling: Inertia sensor-based guidance system for upper limb posture correction, Medical Engineering & Physics Vol. 35 (2013), pp.269-276.

DOI: 10.1016/j.medengphy.2011.09.002

Google Scholar

[12] H. Brock, G. Schmitz, J. Baumann and A.O. Effenberg: If motion sounds: movement sonification based on inertial sensor data, Procedia Engineering Vol. 34 (2012), pp.556-561.

DOI: 10.1016/j.proeng.2012.04.095

Google Scholar

[13] A.U. Alahakone and S.M.N. Arosha Senanayake: A real-time system with assistive feedback for postural control in rehabilitation, IEEE-ASME Transactions on Mechactronics Vol. 15 (2010), pp.226-233.

DOI: 10.1109/tmech.2010.2041030

Google Scholar

[14] R. Zhu and Z. Zhou: A real-time articulated human motion tracking using triaxis inertia/magnetic sensors package, IEEE Transactions on Neural Systems and Rehabilitation Engineering Vol. 12 (2004), pp.295-302.

DOI: 10.1109/tnsre.2004.827825

Google Scholar

[15] R. Moe-Nilssen and J. L Helbostad: Estimation of gait cycle characteristics by trunk accelerometry, Journal of Biomechanics Vol. 37 (2004), pp.121-126.

DOI: 10.1016/s0021-9290(03)00233-1

Google Scholar

[16] S.S. Lobodzinski and M.M. Laks: New devices for very long-term ECG monitoring, Journal of Cardiology Vol. 19 (2012), pp.210-214.

DOI: 10.5603/cj.2012.0039

Google Scholar

[17] T. Reinvuo, M. Hannula, H. Sorvoja, E. Alasaarela and R. Myllylä: Measurement of respiratory rate with high-resolution accelerometer and EMFit pressure Sensor, Proceedings of the IEEE Sensors Applications Sysmposium (2006), pp.192-195.

DOI: 10.1109/sas.2006.1634270

Google Scholar

[18] D. Aujesky, T.E. Auble, D.M. Yealy, R.A. Stone, D.S. Obrosky, T.P. Meehan, L.G. Graff, J.M. Fine and M.J. Fine: Prospective comparison of three validated prediction rules for prognosis in community-acquired pneumonia, American Journal of Medicine Vol. 118 (2005).

DOI: 10.1016/j.amjmed.2005.01.006

Google Scholar

[19] E. Sardini, M. Serpelloni and M. Ometto: Smart vest for posture monitoring in rehabilitation exercises, Proceedings of the IEEE Sensors Applications Symposium (2012).

DOI: 10.1109/sas.2012.6166300

Google Scholar

[20] P. Jourand, H. De Clercq, R. Corthout and R. Puers: Textile integrated breathing and ECG monitoring system, Proceedings of the Eurosensors XXIII Conference (2009), pp.722-725.

DOI: 10.1016/j.proche.2009.07.180

Google Scholar

[21] M. Borghetti, E. Sardini and M. Serpelloni: Sensorized glove for measuring hand finger flexion for rehabilitation purposes, IEEE Transactions on Instrumentation and Measurement Vol. 62 (2013), pp.3308-3314.

DOI: 10.1109/tim.2013.2272848

Google Scholar

[22] C. Huang, C. Shen, C. Tang and S. Chang: A wearable yarn-based piezo-resistive sensor, Sensors and Actuators A Vol. 141 (2008), pp.396-403.

DOI: 10.1016/j.sna.2007.10.069

Google Scholar

[23] A. Dionisi, E. Sardini and M. Serpelloni: Printed sensors on textiles for biomedical applications, Sensors and Microsystems Vol. 268 (2014), pp.439-442.

DOI: 10.1007/978-3-319-00684-0_84

Google Scholar

[24] D. son, J. Lee, S. Qiao, R. Ghaffari, J. Kim, J.E. Lee, C. Song, S.J. Kim, D.J. Lee, S.W. Jun, S. Yang, M. Park, J. Shin, K. Do, M. Lee, K. Kang, C.S. Hwang, N. Lu, T. Hyeon and D. Kim: Multifunctional wearable devices for diagnosis and therapy of movement disorders, Nature Nanotechnology, Advance online publication (2014).

DOI: 10.1038/nnano.2014.38

Google Scholar

[25] A. Cadei, A. Dionisi, E. Sardini and M. Serpelloni: Kinetic and thermal energy harvesters for implantable medical devices and biomedical autonomous sensors, Measurement Science and Technology Vol. 25 (2014), pp.1-14.

DOI: 10.1088/0957-0233/25/1/012003

Google Scholar

[26] D. Halperin, T. Kohno, T.S. Heydt-Benjamin, K. Fu and W.H. Maisel: Security and privacy for implantable medical devices, IEEE Pervasive Computation Vol. 7 (2008), pp.30-39.

DOI: 10.1109/mprv.2008.16

Google Scholar

[27] P. Jourand and R. Puers: An autonomous, capacitive sensor based and battery powered internal bladder pressure monitoring system, Procedia Chemistry Vol. 1 (2009), pp.1263-1266.

DOI: 10.1016/j.proche.2009.07.315

Google Scholar

[28] R. Tan, T. McClure, C.K. Lin, D. Jea, F. Dabiri, T. Massey, M. Sarrafzadeh, M. Srivastava, C.D. Montemagno, P. Schulam and J. Schmidt: Development of a fully implantable wireless pressure monitoring system, Biomedical Microdevices Vol. 11 (2009).

DOI: 10.1007/s10544-008-9232-1

Google Scholar

[29] K.D. Wise, D.J. Anderson, J.F. Hetke, D.R. Kipke and K. Najafi: Wireless implantable microsystems: high-density electronic interfaces to the nervous system, IEEE Proceedings Vol. 92 (2004), pp.76-97.

DOI: 10.1109/jproc.2003.820544

Google Scholar

[30] R.R. Harrison, P.T. Watkins, R.J. Kier, R.O. Lovejoy, D.J. Black, B. Greger and F. Solzbacher: A low-power integrated circuit for a wireless 100-electrode neural recording system, IEEE Journal of Solid-State Circuits Vol. 42 (2007), pp.123-133.

DOI: 10.1109/jssc.2006.886567

Google Scholar

[31] W.C. Stacey and B. Litt: Technology insight: neuroengineering and epilepsy – designing devices for seizure control, Nature Clinical Practice Neurology Vol. 4 (2008), pp.190-201.

DOI: 10.1038/ncpneuro0750

Google Scholar

[32] A. Grans, M. Axelsson, K. Pitsillides, C. Olson, J. Hojesjo, R.C. Kaufman and J.J. Cech Jr.: A fully implantable multi-channel biotelemetry system for measurement of blood flow and temperature: a first evaluation in the green sturgeon, Hydrobiologia Vol. 619 (2009).

DOI: 10.1007/s10750-008-9578-7

Google Scholar

[33] C. Chiang, C. K. Lin and M. Ju: An implantable capacitive pressure sensor for biomedical applications, Sensors and Actuators A Vol. 134 (2007), pp.382-388.

DOI: 10.1016/j.sna.2006.06.007

Google Scholar

[34] A.D. DeHennis and D.W. Kensall: A fully integrated multisite pressure sensor for wireless arterial flow characterization, Journal of Microelectromechanical Systems Vol. 15 (2006), pp.678-685.

DOI: 10.1109/jmems.2006.876668

Google Scholar

[35] P. Chen, S. Saati, R. Varma, M.S. Humayun and Y. Tai: Wireless intraocular pressure sensing using microfabricated minimally invasive flexible-coiled LC sensor implant, Journal of Microelectromechanical Systems Vol. 19 (2010), pp.721-734.

DOI: 10.1109/jmems.2010.2049825

Google Scholar

[36] D. Crescini, E. Sardini and M. Serpelloni: Design and test of an autonomous sensor for force measurements in human knee implants, Sensors and Actuators A Vol. 166 (2011), pp.1-8.

DOI: 10.1016/j.sna.2010.12.010

Google Scholar

[37] H. Chen, M. Liu, J. Cand and Z. Wang: Power harvesting using PZT ceramics embedded in orthopedic implants, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control Vol. 56 (2009), p.2010-(2014).

DOI: 10.1109/tuffc.2009.1277

Google Scholar

[38] S. Almouahed, M. Gouriou, C. Hamitouche, E. Stindel and C. Roux: Self-powered instrumented knee implant for early detection of postoperative complications, Proceedings of the IEEE Engineering in Medicine & Biology Society Conference (2010).

DOI: 10.1109/iembs.2010.5626199

Google Scholar

[39] S. Almouahed, M. Gouriou, C. Hamitouche, E. Stindel and C. Roux: The use of piezoceramics as electrical energy harvesters within instrumented knee implant during walking, IEEE/ASME Transactions on Mechatronics Vol. 16 (2011), pp.799-807.

DOI: 10.1109/tmech.2011.2159512

Google Scholar

[40] C. Lahuec, S. Almouahed, M. Arzel, D. Gupta, C. Hamitouche, M. Jézéquel, E. Stindel and C. Roux: A self-powered telemetry system to estimate the postoperative instability of a knee implant, IEEE Transactions on Biomedical Engineering Vol. 58 (2011).

DOI: 10.1109/tbme.2010.2069099

Google Scholar

[41] D. Marioli, E. Sardini and M. Serpelloni: An inductive telemetric measurement system for humidity sensing, Measurement Science and Technology Vol. 19 (2008), pp.1-8.

DOI: 10.1088/0957-0233/19/11/115204

Google Scholar

[42] N.M. Neihart and R.R. Harrison: Micropower circuits for bidirectional wireless telemetry in neural recording applications, IEEE Transactions on Biomedical Engineering Vol. 52 (2005), p.1950-(1959).

DOI: 10.1109/tbme.2005.856247

Google Scholar

[43] P.D. Mitcheson: Energy harvesting for human wearable and implantable bio-sensors, Proceedings of the IEEE Engineering in Medicine & Biology Society Conference (2010), pp.3432-3436.

DOI: 10.1109/iembs.2010.5627952

Google Scholar

[44] J. Potkay and K. Brooks: An arterial cuff energy scavenger for implanted microsystems, 2nd International Conference on Bioinformatics and Biomedical Engineering (2008), pp.1580-1583.

DOI: 10.1109/icbbe.2008.723

Google Scholar

[45] G. Taveggia, J.H. Villafane, F. Vavassori, C. Lecchi, A. Borboni and S. Negrini: Multimodal treatment of distal sensorimotor polyneuropathy in diabetic patients: a randomized controlled clinical trial, Journal of Manipulative and Physiological Therapeutics Vol. 37 (2014).

DOI: 10.1016/j.jmpt.2013.09.007

Google Scholar

[46] X. Cheng, Y. Zhou, C. Zuo and X. Fan: Design of an upper limb rehabilitation robot based on medical theory, Procedia Engineering Vol. 15 (2011), pp.688-692.

DOI: 10.1016/j.proeng.2011.08.128

Google Scholar

[47] H.S. Lo and S.Q. Xie: Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects, Medical Engineering & Physics Vol. 34 (2012), pp.261-268.

DOI: 10.1016/j.medengphy.2011.10.004

Google Scholar

[48] K. Kiguchi and M. Liyanage: A study of a 4DOF upper-limb power-assist intelligent exoskeleton with visual information for perception-assist, IEEE International Conference on Robotics and Automation (2008), pp.3666-3671.

DOI: 10.1109/robot.2008.4543773

Google Scholar

[49] C. Jacq, B. Lüthi, Th. Maeder, O. Lambercy and R. Gassert: Thick-film multi-DOF force/torque sensor for wrist rehabilitation, Procedia Chemistry Vol. 1 (2009), pp.1267-1270.

DOI: 10.1016/j.proche.2009.07.316

Google Scholar

[50] A. Hamid, M.N.A. Ab Patar and M.A. Ayub: Force sensor detection and performance evaluation of new active system ankle foot orthosis, Procedia Engineering Vol. 41 (2012), pp.510-515.

DOI: 10.1016/j.proeng.2012.07.205

Google Scholar

[51] P.R. Troyk, G.R. DeMichele, D.A. Kerns and R.F. Weir: IMES: an implantable myoelectric sensor, Proceedings of the IEEE Engineering in Medicine & Biology Society Conference (2007), pp.1730-1733.

DOI: 10.1109/iembs.2007.4352644

Google Scholar

[52] Z.S. Zumsteg, C. Kemere, S. O'Driscoll, G. Santhanam, R.E. Ahmed, K.V. Shenoy and T.H. Meng: Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems, IEEE Transactions on Neural Systems & Rehabilitation Vol. 13 (2005).

DOI: 10.1109/tnsre.2005.854307

Google Scholar

[53] R.W. Teasell and L. Kalra: What's new in stroke rehabilitation, Stroke Vol. 35 (2004), pp.383-385.

DOI: 10.1161/01.str.0000115937.94104.76

Google Scholar

[54] A. Borboni, R. Faglia and M. Mor: Compliant device for hand rehabilitation of stroke patient, Proceedings of the ASME Engineering Systems Design and Analysis (2014), pp.1-10.

DOI: 10.1115/esda2014-20081

Google Scholar

[55] R. Raya, R. Ceres, E. Rocon and J.L. Pons: Empowering the autonomy of children with cognitive and physical impairments by inertial head tracking, Procedia Chemistry Vol. 1 (2009), pp.726-729.

DOI: 10.1016/j.proche.2009.07.181

Google Scholar

[56] D.D. Rowlands, W. Usher, M. McCarthy, R. Leadbetter, J. Ride, L. Casey, H. Green, N. Morris, V. Muthukkumarasamy, E. Laakso and D.A. James: An automated activity monitoring system for rehabilitation, Procedia Engineering Vol. 60 (2013).

DOI: 10.1016/j.proeng.2013.07.034

Google Scholar