The State of the Art of Mobile Robots on a Solid Surface

Article Preview

Abstract:

This paper presents an overview of the state of art of mobile robots presenting aspects of their current level of sophistication, fields mobile robots are being presently used, the future application and scope of mobile robots. Classifying the primary research topics of multi-robot systems into seven major categories (Biological inspirations, architecture, localization/mapping/exploration, object transport and manipulation, motion co-ordination, reconfigurable and learning robot systems, vision), we discuss the current state of research in these areas. An attempt to cover the points for which a general agreement has emerged within the scientific domain, are then presented, followed by a discussion of alternative approaches and currently unsolved problems. This paper also reviews the most relevant literature and previous research activity regarding mobile robotics. We conclude by identifying more topics of scientific consensus, open research issues and a discussion of some application areas where mobile robots could be used with existing technology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-68

Citation:

Online since:

August 2015

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. X.Q., C. Y.Q., and C. J.G.: Mobiles Robots - Past Present and Future, in Mobile Robots - State of the Art in Land, Sea, Air, and Collaborative Missions, C. X.Q., Editor., InTech. (2009).

DOI: 10.5772/6986

Google Scholar

[2] G. Resconi, A. Borboni, R. Faglia, and M. Tiboni: Lecture Notes in Computer Science Vol. 2178 LNCS (2001), pp.352-368.

DOI: 10.1007/3-540-45654-6_28

Google Scholar

[3] M. Antonini, A. Borboni, R. Bussola, and R. Faglia: Proceedings of 8th Biennial ASME Conference on Engineering Systems Design and Analysis ESDA2006 Vol. 2006 (2006), pp.1-8.

Google Scholar

[4] A. Borboni, R. Bussola, R. Faglia, P.L. Magnani, and A. Menegolo: Journal of Mechanical Design, Transactions of the ASME Vol. 130 (2008), pp.0823011-0823016.

DOI: 10.1115/1.2918907

Google Scholar

[5] A. Borboni, F. Aggogeri, and R. Faglia: International Journal of Advanced Robotic Systems Vol. 10 (2013), pp.1-10.

Google Scholar

[6] R. Fernández, C. Salinas, H. Montes, P.G. De Santos, and M. Armada, in: Adaptive Mobile Robotics - Proceedings of the 15th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2012. (2012).

DOI: 10.1108/ir.2006.33.4.321.1

Google Scholar

[7] T.M. Knasel: Robotics Vol. 2 (1986), pp.149-155.

Google Scholar

[8] T. Arai, E. Pagello, and L.E. Parker: IEEE Transactions on Robotics and Automation Vol. 18 (2002), pp.655-661.

Google Scholar

[9] J. Xiao, A. Sadegh, M. Elliott, A. Calle, A. Persad, and H.M. Chiu, in: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM. (2005).

DOI: 10.1109/aim.2005.1501030

Google Scholar

[10] N. Silva, A. Vale, and L. Baglivo, in: ICINCO 2013 - Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics. (2013).

Google Scholar

[11] P. Boucher: Robotica Vol. 89 (2014), p.

Google Scholar

[12] A. Borboni: Proc of the IEEE International Conference on Fuzzy Systems Vol. 1 (2001), pp.336-339.

Google Scholar

[13] C. Amici, A. Borboni, R. Faglia, D. Fausti, and P.L. Magnani: IEEE/RSJ International Conference on Intelligent Robots and Systems IROS Vol. 2008 (2008), pp.735-740.

DOI: 10.1109/iros.2008.4651029

Google Scholar

[14] A.S. Tubaileh: International Journal of Advanced Manufacturing Technology Vol. 74 (2014), pp.1521-1537.

Google Scholar

[15] A. Yazici: International Journal of Advanced Robotic Systems Vol. 10 (2013), p.

Google Scholar

[16] C. Amici, A. Borboni, P.L. Magnani, and D. Pomi: Proceedings of EUCOMES 2008 - The 2nd European Conference on Mechanism Science Vol. 2008 (2009), pp.479-485.

Google Scholar

[17] D. Coman and A. Ionescu: Boundary Value Problems Vol. 2013 (2013), p.

Google Scholar

[18] C. Amici, A. Borboni, and R. Faglia: Advances in Mechanical Engineering Vol. 2 (2010), pp.1-9.

Google Scholar

[19] J. Jezný: Kinematic model of nonholonomic mobile robots, in Applied Mechanics and Materials. pp.107-114. (2014).

DOI: 10.4028/www.scientific.net/amm.611.107

Google Scholar

[20] A. Borboni, F. Aggogeri, and R. Faglia: ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis ESDA 2014 Vol. 3 (2014), pp.1-10.

Google Scholar

[21] J. Płaskonka, in: 2012 17th International Conference on Methods and Models in Automation and Robotics, MMAR 2012. (2012).

Google Scholar

[22] A. Borboni, S. Pandini, D. Cambiaghi, M. Lancini, R. Adamini, R. Faglia, I. Bodini, D. Vetturi, L. Dassa, T. Riccò, M.D. Espositi, K. Paderni, M. Messori, F. Pilati, and M. Toselli: ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis, ESDA 2014 Vol. 3 (2014).

DOI: 10.1115/esda2014-20106

Google Scholar

[23] A. Rodic and G. Mester: Acta Polytechnica Hungarica Vol. 10 (2013), pp.113-133.

Google Scholar

[24] L. Ding, Haibogao, YuankaiLi, GuangjunLiu, and ZongquanDeng: Mechanism and Machine Theory Vol. 86 (2015), pp.235-264.

DOI: 10.1016/j.mechmachtheory.2014.12.011

Google Scholar

[25] C. Amici, A. Borboni, P.L. Magnani, and D. Pomi: Proceedings of EUCOMES 2008 - The 2nd European Conference on Mechanism Science Vol. 2008 (2009), pp.487-493.

Google Scholar

[26] T.T. Tsung and N. Hoai: Dynamic performance measurement of proximity sensors for a mobile robot, in Key Engineering Materials. pp.683-688. (2015).

DOI: 10.4028/www.scientific.net/kem.625.683

Google Scholar

[27] M. Brunner, T. Fiolka, D. Schulz, and C.M. Schlick: Robotics and Autonomous Systems Vol. 63 (2014), pp.89-107.

Google Scholar

[28] H. Xu, X. Liu, Z. Zhang, and H. Fu: Jiqiren/Robot Vol. 35 (2013), pp.208-217.

Google Scholar

[29] A. Borboni, D. De Santis, and R. Faglia: Proceedings of 8th Biennial ASME Conference on Engineering Systems Design and Analysis ESDA2006 Vol. 2006 (2006), pp.1-8.

Google Scholar

[30] A. Akbarimajd and N. Sotoudeh: Advanced Robotics Vol. 28 (2014), pp.105-117.

Google Scholar

[31] A. Borboni and R. Faglia: Journal of Applied Mechanics Transactions ASME Vol. 80 (2013), pp.1-7.

Google Scholar

[32] J. Al-Azzeh, S.F. Yatsun, A.A. Cherepanov, I.V. Lupehina, and V.S. Dichenko: Research Journal of Applied Sciences Vol. 9 (2014), pp.597-602.

Google Scholar

[33] A. Borboni, M. Lancini, and R. Faglia: ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis ESDA 2014 Vol. 2 (2014), pp.1-7.

Google Scholar

[34] G. Zhong, Y. Kobayashi, T. Emaru, and Y. Hoshino: JVC/Journal of Vibration and Control Vol. 20 (2014), pp.3-23.

Google Scholar

[35] I.A. Gravagne, I.D. Walker, and C.D. Rahn, in: Proceedings of the ASME Design Engineering Technical Conference. (2001).

Google Scholar

[36] A. Borboni, D. De Santis, and R. Faglia: ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis ESDA2010 Vol. 2 (2010), pp.99-106.

DOI: 10.1115/esda2010-24257

Google Scholar

[37] T. Chanthasopeephan, A. Jarakorn, P. Polchankajorn, and T. Maneewarn: Robotics and Autonomous Systems Vol. 62 (2014), pp.38-45.

DOI: 10.1016/j.robot.2012.07.017

Google Scholar

[38] J. Frémy, F. Ferland, M. Lauria, and F. Michaud: Robotics and Autonomous Systems Vol. 62 (2014), pp.579-590.

DOI: 10.1016/j.robot.2014.01.002

Google Scholar

[39] A. Borboni and D. De Santis: Meccanica Vol. 49 (2014), pp.1327-1336.

Google Scholar

[40] A. Borboni, R. Faglia, and M. Mor: ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis ESDA 2014 Vol. 1 (2014), pp.1-10.

Google Scholar

[41] S. Nam, J. Oh, G. Lee, J. Kim, and T. Seo: Journal of Mechanical Science and Technology Vol. 28 (2014), pp.5175-5187.

Google Scholar

[42] J. Moravec and P. Pošík: Evolutionary Intelligence Vol. 6 (2014), pp.171-191.

Google Scholar

[43] F. Aggogeri, A. Borboni, A. Merlo, and N. Pellegrini: Advanced Materials Research Vol. 590 (2012), pp.252-257.

DOI: 10.4028/www.scientific.net/amr.590.252

Google Scholar

[44] A. Borboni, F. Aggogeri, N. Pellegrini, and R. Faglia: Advanced Materials Research Vol. 590 (2012), pp.399-404.

DOI: 10.4028/www.scientific.net/amr.590.399

Google Scholar

[45] F. Aggogeri, A. Borboni, R. Faglia, A. Merlo, and S. De Cristofaro: Applied Mechanics and Materials Vol. 336-338 (2013), pp.1170-1173.

DOI: 10.4028/www.scientific.net/amm.336-338.1170

Google Scholar

[46] A. Borboni, E. Ceretti, A. Copeta, D. Moscatelli, R. Faglia, and A. Attanasio: ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis ESDA 2014 Vol. 2 (2014), pp.1-7.

DOI: 10.1115/esda2014-20078

Google Scholar

[47] W.K. Tey, C.F. Yeong, Y.L. Seow, E.L.M. Su, and S.H. Tang: Low cost sensor data fusion in omnidirectional mobile robot feedback system to improve the navigation accuracy, in Applied Mechanics and Materials. pp.791-794. (2014).

DOI: 10.4028/www.scientific.net/amm.607.791

Google Scholar

[48] D. Zhang, L. Mao, X.N. Tang, Z.B. Li, and J.P. Chen: High-accuracy locomotion control method for automatic docking between mobile self-reconfigurable microrobots, in Applied Mechanics and Materials. pp.143-147. (2013).

DOI: 10.4028/www.scientific.net/amm.347-350.143

Google Scholar

[49] V.I. Guzeev and D.Y. Pimenov: Russian Engineering Research Vol. 31 (2011), pp.989-993.

Google Scholar

[50] D.Y. Pimenov: Journal of Friction and Wear Vol. 34 (2013), pp.290-293.

Google Scholar

[51] D.Y. Pimenov: Journal of Friction and Wear Vol. 34 (2013), pp.156-159.

Google Scholar

[52] D.Y. Pimenov: Journal of Friction and Wear Vol. 35 (2014), pp.250-254.

Google Scholar

[53] D.Y. Pimenov, V.I. Guzeev, and A.A. Koshin: Russian Engineering Research Vol. 31 (2011), pp.1151-1155.

Google Scholar

[54] D.Y. Pimenov, V.I. Guzeev, and A.A. Koshin: Russian Engineering Research Vol. 31 (2011), pp.1105-1109.

Google Scholar

[55] T. Mikolajczyk, T. Fas, T. Malinowski, and Ł. Romanowski: New solution for walking robot, in Applied Mechanics and Materials. pp.232-238. (2014).

DOI: 10.4028/www.scientific.net/amm.555.232

Google Scholar

[56] T. Mikolajczyk, T. Fas, T. Malinowski, and Ł. Romanowski: Prototype model of walking robot, in Applied Mechanics and Materials. pp.21-28. (2014).

DOI: 10.4028/www.scientific.net/amm.613.21

Google Scholar

[57] I. Doroftei and B. Stirbu: Mechanika Vol. 20 (2014), pp.70-79.

Google Scholar

[58] A. Borboni, R. Bussola, R. Faglia, and M. Tiboni: Proceedings of the 2004 Eleventh World Congress in Mechanism and Machine Science Vol. 1 (2004), pp.1-5.

Google Scholar

[59] J. Kim, J.H. Jeon, H.J. Kim, H. Lim, and I.K. Oh: ACS Nano Vol. 8 (2014), pp.2986-2997.

Google Scholar

[60] A. Borboni, F. Aggogeri, N. Pellegrini, and R. Faglia: Advanced Materials Research Vol. 590 (2012), pp.405-410.

DOI: 10.4028/www.scientific.net/amr.590.405

Google Scholar

[61] R. Soltani-Zarrin and S. Jayasuriya, in: IEEE International Conference on Intelligent Robots and Systems. (2014).

Google Scholar

[62] A. Borboni, R. Faglia, and M. Palpacelli: MESA 2014 - 10th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications Vol. 1 (2014), pp.1-7.

DOI: 10.1109/mesa.2014.6935572

Google Scholar

[63] M. Tiboni, A. Borboni, M. Mor, and D. Pomi: Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering Vol. 225 (2011), pp.443-451.

DOI: 10.1177/2041304110394531

Google Scholar

[64] S. Pandini, A. Borboni, I. Bodini, D. Vetturi, D. Cambiaghi, K. Paderni, M. Messori, M. Toselli, and T. Riccò: AIP Conference Proceedings Vol. 1599 (2014), pp.306-309.

DOI: 10.1063/1.4876839

Google Scholar

[65] S. Pandini, T. Riccò, A. Borboni, I. Bodini, D. Vetturi, D. Cambiaghi, M. Toselli, K. Paderni, M. Messori, F. Pilati, F. Chiellini, and C. Bartoli: Journal of Materials Engineering and Performance Vol. 23 (2014), pp.2545-2552.

DOI: 10.1007/s11665-014-1033-5

Google Scholar