Design and Experimental Validation of a Shape Memory Alloy Actuator for Linear Motors

Article Preview

Abstract:

This paper presents an innovative mechanical actuator using a shape memory alloy (SMA) with a cooling system based on combined thermoelectric effect and forced air cooling systems. The main advantages of using SMAs include the reduction of the system weight, the ease and reliability in application, and a simple control strategy. This study focuses on the development of the system highlighting the mathematical model of the actuator, and an experimental prototype was implemented. Several experiments are used to validate the model and to identify best SMA actuator configuration parameters. Experiments were used to evaluate the actuator closed-loop performance, stability, and robustness properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-75

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Otsuka K, Ren X.: Physical metallurgy of Ti-Ni-based shape memory alloys, Prog Mater Sci, (2005), pp.511-678.

DOI: 10.1016/j.pmatsci.2004.10.001

Google Scholar

[2] A. Borboni, D. De Santis, R. Faglia: Large deflection of a non-linear, elastic, asymmetric Ludwick cantilever beam, ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010 2, (2010), pp.99-106.

DOI: 10.1115/esda2010-24257

Google Scholar

[3] F. Aggogeri, F. Al-Bender, B. Brunner, M. Elsaid, M. Mazzola, A. Merlo, D. Ricciardi, M. de la O Rodriguez, E. Salvi: Design of piezo-based AVC system for machine tool applications, Mechanical Systems and Signal Processing, Vol. 36 (2013).

DOI: 10.1016/j.ymssp.2011.06.012

Google Scholar

[4] M. Nishida, T. Nishiura, H. Kawano, T. Inamura: Self-accommodation of B19 martensite in Ti–Ni shape memory alloys – part I, Morphological and crystallographic studies of the variant selection rule, Philos. Mag. 92, (2012), p.2215– 2233.

DOI: 10.1080/14786435.2012.669858

Google Scholar

[5] L.C. Brinson: One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable, J. Intell. Mater. Syst. Struct. 4, (1993), p.229–242.

DOI: 10.1177/1045389x9300400213

Google Scholar

[6] D. Reynaerts, H. Van Brussel: Design aspects of shape memory actuators, Article Mechatronics 8, (1998), pp.635-656.

DOI: 10.1016/s0957-4158(98)00023-3

Google Scholar

[7] F. Aggogeri, A. Borboni, R. Faglia: Reliability roadmap for mechatronic systems, Applied Mechanics and Materials 373-375 (2013), pp.130-133.

DOI: 10.4028/www.scientific.net/amm.373-375.130

Google Scholar

[8] M. Tiboni, A. Borboni, M. Mor et al.: An innovative pneumatic mini-valve actuated by SMA Ni-Ti wires: design and analysis, Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering 225, (2011).

DOI: 10.1177/2041304110394531

Google Scholar

[9] C. Mavroidis: Development of advanced actuators using shape memory alloys and electrorheological fluids, Res Nondestr Eval 14, (2002), p.1–32.

DOI: 10.1080/09349840209409701

Google Scholar

[10] F. Aggogeri, A. Borboni, R. Faglia, A. Merlo, S. De Cristofaro: Precision Positioning Systems: An overview of the state of art, Applied Mechanics and Materials 336-338 (2013), pp.1170-1173.

DOI: 10.4028/www.scientific.net/amm.336-338.1170

Google Scholar

[11] M. Rahim, J. Frenzel, M. Frotscher, J. Pfetzing-Micklich, R. Steegmuller, M. Wohlschlogel, H. Mughrabi, G. Eggeler: Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys, Acta Mater. 61, (2013), p.3667–3686.

DOI: 10.1016/j.actamat.2013.02.054

Google Scholar

[12] Z. Guo, H. Yu, Liang B. Wee: Design of a novel compliant differential shape memory alloy actuator, Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Tokyo, (2013), pp.4925-4930.

DOI: 10.1109/iros.2013.6697067

Google Scholar

[13] A. Borboni, F. Aggogeri, R. Faglia: Fast Kinematic Model of a Seven-Bar Linkage With a Single Compliant Link, Proceeding of 12th Biennial Conference on Engineering Systems Design and Analysis, Volume 3, (2014).

DOI: 10.1115/esda2014-20076

Google Scholar

[14] S. Kim, E. Hawkes, K. Choy, M. Joldaz, J. Foleyz, R. Wood: Micro artificial muscle fiber using NiTi spring for soft robotics, in: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, St. Louis, (2009), p.2228–2234.

DOI: 10.1109/iros.2009.5354178

Google Scholar

[15] M. Langelaar and F. van Keulen: Sensitivity analysis of shape memory alloy shells, Comput. Struct. 86, (2008), p.964–976.

DOI: 10.1016/j.compstruc.2007.04.019

Google Scholar