[1]
Otsuka K, Ren X.: Physical metallurgy of Ti-Ni-based shape memory alloys, Prog Mater Sci, (2005), pp.511-678.
DOI: 10.1016/j.pmatsci.2004.10.001
Google Scholar
[2]
A. Borboni, D. De Santis, R. Faglia: Large deflection of a non-linear, elastic, asymmetric Ludwick cantilever beam, ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010 2, (2010), pp.99-106.
DOI: 10.1115/esda2010-24257
Google Scholar
[3]
F. Aggogeri, F. Al-Bender, B. Brunner, M. Elsaid, M. Mazzola, A. Merlo, D. Ricciardi, M. de la O Rodriguez, E. Salvi: Design of piezo-based AVC system for machine tool applications, Mechanical Systems and Signal Processing, Vol. 36 (2013).
DOI: 10.1016/j.ymssp.2011.06.012
Google Scholar
[4]
M. Nishida, T. Nishiura, H. Kawano, T. Inamura: Self-accommodation of B19 martensite in Ti–Ni shape memory alloys – part I, Morphological and crystallographic studies of the variant selection rule, Philos. Mag. 92, (2012), p.2215– 2233.
DOI: 10.1080/14786435.2012.669858
Google Scholar
[5]
L.C. Brinson: One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable, J. Intell. Mater. Syst. Struct. 4, (1993), p.229–242.
DOI: 10.1177/1045389x9300400213
Google Scholar
[6]
D. Reynaerts, H. Van Brussel: Design aspects of shape memory actuators, Article Mechatronics 8, (1998), pp.635-656.
DOI: 10.1016/s0957-4158(98)00023-3
Google Scholar
[7]
F. Aggogeri, A. Borboni, R. Faglia: Reliability roadmap for mechatronic systems, Applied Mechanics and Materials 373-375 (2013), pp.130-133.
DOI: 10.4028/www.scientific.net/amm.373-375.130
Google Scholar
[8]
M. Tiboni, A. Borboni, M. Mor et al.: An innovative pneumatic mini-valve actuated by SMA Ni-Ti wires: design and analysis, Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering 225, (2011).
DOI: 10.1177/2041304110394531
Google Scholar
[9]
C. Mavroidis: Development of advanced actuators using shape memory alloys and electrorheological fluids, Res Nondestr Eval 14, (2002), p.1–32.
DOI: 10.1080/09349840209409701
Google Scholar
[10]
F. Aggogeri, A. Borboni, R. Faglia, A. Merlo, S. De Cristofaro: Precision Positioning Systems: An overview of the state of art, Applied Mechanics and Materials 336-338 (2013), pp.1170-1173.
DOI: 10.4028/www.scientific.net/amm.336-338.1170
Google Scholar
[11]
M. Rahim, J. Frenzel, M. Frotscher, J. Pfetzing-Micklich, R. Steegmuller, M. Wohlschlogel, H. Mughrabi, G. Eggeler: Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys, Acta Mater. 61, (2013), p.3667–3686.
DOI: 10.1016/j.actamat.2013.02.054
Google Scholar
[12]
Z. Guo, H. Yu, Liang B. Wee: Design of a novel compliant differential shape memory alloy actuator, Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Tokyo, (2013), pp.4925-4930.
DOI: 10.1109/iros.2013.6697067
Google Scholar
[13]
A. Borboni, F. Aggogeri, R. Faglia: Fast Kinematic Model of a Seven-Bar Linkage With a Single Compliant Link, Proceeding of 12th Biennial Conference on Engineering Systems Design and Analysis, Volume 3, (2014).
DOI: 10.1115/esda2014-20076
Google Scholar
[14]
S. Kim, E. Hawkes, K. Choy, M. Joldaz, J. Foleyz, R. Wood: Micro artificial muscle fiber using NiTi spring for soft robotics, in: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, St. Louis, (2009), p.2228–2234.
DOI: 10.1109/iros.2009.5354178
Google Scholar
[15]
M. Langelaar and F. van Keulen: Sensitivity analysis of shape memory alloy shells, Comput. Struct. 86, (2008), p.964–976.
DOI: 10.1016/j.compstruc.2007.04.019
Google Scholar