Control System for Industrial Robot Equipped with Tool for Advanced Task in Manufacturing

Article Preview

Abstract:

A special control system of IRb 60 industrial robots by using PC computer was shown in this work. Robots steering system equipped with the controller connected to computer’s LPT port was made and tested. This interface was connected to a manual control panel of the robot. The system was controlled by special VB 6.0 software. It is possible manual or automated control of robot move. Using this system was made other applications for many tasks of using an industrial robot equipped with tool and sensors in research and manufacturing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-113

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Honczarenko, Roboty przemysłowe. Budowa i zastosowanie. Industrial Robots. Design and Implementation (in polish), WNT, Warszawa, (2004).

Google Scholar

[2] A. Morecki, Podstawy robotyki. Basis of Robotics (in polish), WNT, Warszawa, (2000).

Google Scholar

[3] Y. H. Chen, Y. N. Hu, Implementation of a robot system for sculptured surface cutting. Part Rough Machining. Int. J. Adv. Manuf. Technology, v. 15, (1999), pp.624-629.

DOI: 10.1007/s001700050111

Google Scholar

[4] H. Latoś, T. Mikolajczyk, Virtual Aid Design of Geometric and Kinematics Flexible Tool. XII Workshop – Virtual Manufacturing. Poland, Karpacz, (2001) 145-152.

Google Scholar

[5] H. Latoś, T. Mikolajczyk, Surface Shaping with Industrial Robot. I OPTIROB'2006 –Romania, Predeal, (2006) 265-269.

Google Scholar

[6] E. Abele and others, Prediction of the Tool Displacement by Coupled Models of the Compliant Industrial Robot and the Milling Process. Proceedings of the International Conference on Process Machine Interactions, (2008) 223-230.

Google Scholar

[7] T. Mikolajczyk, Manufacturing using Robot. Advanced Materials Research, 463-464 (2012) 1643-1646.

DOI: 10.4028/www.scientific.net/amr.463-464.1643

Google Scholar

[8] T. Mikolajczyk, R. Polasik, Nonconventional Milling using Industrial Robot. Journal of Polish CIMAC, 6/3 (2011) 159-164.

Google Scholar

[9] T. Mikolajczyk, P. Wasiak, Machining with Image Recognition using Industrial Robot. Applied Mechanics and Materials, 186 (2012) 50-57.

DOI: 10.4028/www.scientific.net/amm.186.50

Google Scholar

[10] Y. N. Hu, Y. H. Chen, Implementation of a Robot System for Sculptured Surface Cutting. Part Finish Machining. Int. J. Adv. Manuf. Technology, 15 (1999) 630-639.

DOI: 10.1007/s001700050112

Google Scholar

[11] T. Mikolajczyk, Robot Application to Surface Manufacturing. Acta Mechanica Slovaca, Kosice, rocnik 12 2-A (2008) 387-394.

Google Scholar

[12] A. Yanou, M. Minami and H. Tanimoto, Continuous Shape-grinding Experiment Based on Model-Independent Force/Position Hybrid Control Method with On-line Spline Approximation. Journal Artificial Life and Robotics archive 18/3-4 (2013) 219-227.

DOI: 10.1007/s10015-013-0119-8

Google Scholar

[13] T. Mikolajczyk, Robot Application to Surface Finish Machining, Journal of Polish CIMAC, 5/3 (2010) 107-112.

Google Scholar

[14] T. Mikolajczyk, The Robot Machining System with Surface Shape Active Control. II OPTIROB'2007 –Romania, Predeal, (2006) 205-209.

Google Scholar

[15] T. Mikolajczyk, P. Milko, Shaping of Polystyrene Foam Products with Industrial Robot. I OPTIROB'2006 –Romania, Predeal, (2006) 261-264.

Google Scholar

[16] J. Zhu, T. Tanaka and Y. Saito, Multi-Resolution Mesh for Sculptured Surface Machining. Journal of Solid Mechanics and Materials Engineering 1/1 (2007).

DOI: 10.1299/jmmp.1.69

Google Scholar

[17] T. Mikolajczyk, L. Romanowski & S. Sojka, Model of Mechatronics Robots Tool with Controlled Geometry. Applied Mechanics and Materials, 436, (2013) 382-389.

DOI: 10.4028/www.scientific.net/amm.436.382

Google Scholar

[18] J. Semjon, M. Hajduk, R. Jánoš & M. Vagas, Modular Welding Fixtures for Robotic Cells, Applied Mechanics and Materials 309 (2013) 80-87.

DOI: 10.4028/www.scientific.net/amm.309.80

Google Scholar

[19] T. Mikolajczyk, M. Mikolajczyk & A. Skibicki, On Line Videooptical System for Weld Groove Analysis. Applied Mechanics and Materials, 613 (2014) 350-356.

DOI: 10.4028/www.scientific.net/amm.613.350

Google Scholar

[20] T. Mikolajczyk, K. Rudnicki, Turning Robot. Acta Mechanica Slovaca, Kosice, rocnik 13 2-A (2009) 139-146.

Google Scholar

[21] T. Mikolajczyk, Robot-Turner. Advanced Materials Research 463-464 (2012) 1682-1685.

DOI: 10.4028/www.scientific.net/amr.463-464.1682

Google Scholar

[22] R. Dwivedi, R. Kovacevic, Automated Torch Path Planning using Polygon Subdivision for Solid Freeform Fabrication Based on Welding. Journal of Manufacturing Systems 23/4 (2004).

DOI: 10.1016/s0278-6125(04)80040-2

Google Scholar

[23] S.H. Choi, W.K. Zhu, A Dynamic Priority-Based Approach to Concurrent Tool Path Planning for Multi-Material Layered Manufacturing Computer-Aided Design 4/2 (2010) 1095–1107.

DOI: 10.1016/j.cad.2010.07.004

Google Scholar

[24] T. Mikolajczyk, J. Lewandowski J., Kształtowanie przyrostowe z zastosowaniem robota przemysłowego. Layer Manufacturing using Industrial Robot (in polish). Inżynieria i Aparatura Chemiczna, 3 (2011) 51-57.

Google Scholar

[25] H. Wrn, Automatic Off-Line Programming and Motion Planning for Industrial Robots. In ISR98, 29th International Symposium on Robotics 1998. ISR Press. ABB (2000).

Google Scholar

[26] T. Mikolajczyk, D. Dorsz & L. Romanowski, Design and Control System of Parallel Kinematics Manipulator. Applied Mechanics and Materials, 436 (2013) 382-389.

DOI: 10.4028/www.scientific.net/amm.436.390

Google Scholar

[27] T. Mikolajczyk, K. Bednarczyk, A. Mikolajczyk, Model of Human Hand Controlled using Pneumatic Muscle. Applied Mechanics and Materials, 555 (2014) 155-162.

DOI: 10.4028/www.scientific.net/amm.555.155

Google Scholar

[28] T. Mikolajczyk, A. Olaru & P. Krainski, Adaptive Control System for Drill Machine Applied Mechanics and Materials, 436 (2013) 445-450.

DOI: 10.4028/www.scientific.net/amm.436.445

Google Scholar

[29] T. Malinowski, T. Mikolajczyk & A. Olaru, Control of Articulated Manipulator Model using ATMEGA16. Applied Mechanics and Materials, 555 (2014) 147-154.

DOI: 10.4028/www.scientific.net/amm.555.147

Google Scholar

[30] Instrukcja obsługi robota IRb60, Manual of IRb60 Robot (in polish), PIAP Warszawa (1988).

Google Scholar

[31] T. Mikolajczyk, Robot Vision System to Turning Tool Measure and Recognizing. Acta Mechanica Slovaca, Kosice, rocnik 12 2-A (2008) 387-394.

Google Scholar

[32] T. Mikolajczyk, System to Surface Control in Robot Machining. Advanced Materials Research, 463-464 (2012) 708-711.

DOI: 10.4028/www.scientific.net/amr.463-464.708

Google Scholar

[33] T. Mikolajczyk, L. Romanowski, Indication of Machining Area with the Robot's Camera using. Applied Mechanics and Materials, 282 (2013) 146-151.

DOI: 10.4028/www.scientific.net/amm.282.146

Google Scholar

[34] T. Mikolajczyk, Videooptical Surface Shape and Integrity Estimation in Robots Machining. Applied Mechanics and Materials, 332 (2013) 431-436.

DOI: 10.4028/www.scientific.net/amm.332.270

Google Scholar