Mechatronics Tools for Turning

Article Preview

Abstract:

Nowadays increase using of tools with geometric and kinematical flexibility (GKF). In paper present idea of this tool with drive as mechatronics tool. Was shown an examples of some market mechatronics tools. Was presented too own solutions of mechatronic tools with one degree of freedom (DOF) for turning. This tools are controlled using stepper motor by use of PC. To control of the tool was used PC with the motor control interface connected to the LPT port. The first tool with rotary axis perpendicular to lathe axis was used to control rake angle or angle of edge. Second presented tool is equipped in linear axis perpendicular to lathe axis. Tool placed in the guides was driving using the stepper motor and a screw cooperating with the nut joined with the tool. This tool mounted to the holder tool allows machining shape surface using the universal lathe.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-125

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Cichosz, Narzędzia skrawające (Cutting Tools in polish), WNT Warszawa, (2006).

Google Scholar

[2] P. Cichosz, M. Kuzinowski, Narzędzia mechatroniczne w skrawaniu. (Mechatronics Tools in Machining – in polish). W Obróbka skrawaniem tom 3, Zaawansowana technika. pod redakcją H. Latosia. Wyd. uczelniane UTP Bydgoszcz (2009) 259-274.

Google Scholar

[3] H. Latos, Elastyczność geometryczno-kinematyczna narzędzi skrawających. (Geometrics and Kinematical Flexibility of Cutting Tools –in polish). Wydawnictwo Uczelniane Akademii Techniczno-Rolniczej, Bydgoszcz, (1997).

Google Scholar

[4] H. Latos, T. Mikolajczyk, Surface shaping with industrial robot. Optimization of the Robots and Manipulators OPTIROB'2006, Predeal, Romania, University POLITEHNICA, of Bucharest, (2006) 265-269.

Google Scholar

[5] H. Latos, T. Mikolajczyk, Virtual Aid Design of Geometric and Kinematics Flexible Tools. XII Workshop on Supervising and Diagnostics of Machining Systems. Virtual Manufacturing, Karpacz, Poland (2001) 145-152.

Google Scholar

[6] T. Mikolajczyk, Nóż tokarski uniwersalny. (Universal Turning Tool – in polish) Zeszyty Naukowe nr 231, Mechanika 49, ATR Bydgoszcz (2000) 95-101.

Google Scholar

[7] T. Mikolajczyk, Manufacturing using Robot. Advanced Materials Research 463 (2012) 1643-1646.

DOI: 10.4028/www.scientific.net/amr.463-464.1643

Google Scholar

[8] T. Mikolajczyk, L. Kamieniecki, PC Controlled Turning Tool. Applied Mechanics and Materials, 325-326 (2013) 1110-1114.

DOI: 10.4028/www.scientific.net/amm.325-326.1110

Google Scholar

[9] T. Mikolajczyk, L. Romanowski, S. Sojka, Model of Mechatronics Robots Tool with Controlled Geometry. Applied Mechanics and Materials 436 (2013) 382-389.

DOI: 10.4028/www.scientific.net/amm.436.382

Google Scholar

[10] T. Mikołajczyk, Tworzenie narzędzia elastycznego geometryczno-kinematycznie (Creating a Geometric and Kinematically Flexible Tool – in polish), Inżynieria i Aparatura Chemiczna, 2 (2009) 100-101.

Google Scholar

[11] www. dandrea. com.

Google Scholar

[12] www. kometgroup. com/en/tools-navigation/tools/mechatronic. html.

Google Scholar

[13] www. mapal. com/fileadmin/00_PDF-Dateien/Kataloge/en/MAPAL_Tooltronic_en. pdf.

Google Scholar

[14] www. machsupport. com.

Google Scholar

[15] www. cnc. info. pl.

Google Scholar

[16] L. Ciupitu, A. Olaru and S. Toyama, On the Controlling of Spherical Ultrasonic Motor. Applied Mechanics and Materials, 325-326 (2013) 1115-1125.

DOI: 10.4028/www.scientific.net/amm.325-326.1115

Google Scholar

[17] K. Grosmann, A. Muhl, J. Muller and A. Schwenn, Mit der Mikroachse, genauer drehen. Werkstatt und Betrieb, 136/7-8 (2003) 51-54.

Google Scholar

[18] A. Borboni, F. Aggogeri and R. Faglia, Design and Analysis of a Fibre-shaped Micro-actuator for Robotic Gripping. International Journal of Advanced Robotic Systems 10(149) (2013) 1-10.

DOI: 10.5772/55539

Google Scholar

[19] T. Mikolajczyk, K. Bednarczyk and A. Mikolajczyk, Model of Human Hand Controlled Using Pneumatic Muscles, Applied Mechanics and Materials, 555 (2014) 155-162.

DOI: 10.4028/www.scientific.net/amm.555.155

Google Scholar

[20] A. Borboni, E. Ceretti, A. Copeta, D. Moscatelli, R. Faglia, and A. Attanasio, High precision machine based on a differential mechanism. ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis ESDA 2014, 2 (2014) 1-7.

DOI: 10.1115/esda2014-20078

Google Scholar

[21] www. youtube. com/watch?v=oAEh0OdQWVo (Sanguinololu Atmega 1284P Marlin - TEST RepRap Prusa ).

Google Scholar

[22] T. Malinowski, T. Mikolajczyk and A. Olaru, Control of Articulated Manipulator Model Using ATMEGA16. Applied Mechanics and Materials, 555 (2014) 155-162.

DOI: 10.4028/www.scientific.net/amm.555.147

Google Scholar

[23] F. Aggogeri, A. Borboni, A. Merlo, and N. Pellegrini, Machine Tools Thermostabilization using Passive Control Strategies, Advanced Materials Research, 590 (2012) 252-257.

DOI: 10.4028/www.scientific.net/amr.590.252

Google Scholar