[1]
P. Cichosz, Narzędzia skrawające (Cutting Tools in polish), WNT Warszawa, (2006).
Google Scholar
[2]
P. Cichosz, M. Kuzinowski, Narzędzia mechatroniczne w skrawaniu. (Mechatronics Tools in Machining – in polish). W Obróbka skrawaniem tom 3, Zaawansowana technika. pod redakcją H. Latosia. Wyd. uczelniane UTP Bydgoszcz (2009) 259-274.
Google Scholar
[3]
H. Latos, Elastyczność geometryczno-kinematyczna narzędzi skrawających. (Geometrics and Kinematical Flexibility of Cutting Tools –in polish). Wydawnictwo Uczelniane Akademii Techniczno-Rolniczej, Bydgoszcz, (1997).
Google Scholar
[4]
H. Latos, T. Mikolajczyk, Surface shaping with industrial robot. Optimization of the Robots and Manipulators OPTIROB'2006, Predeal, Romania, University POLITEHNICA, of Bucharest, (2006) 265-269.
Google Scholar
[5]
H. Latos, T. Mikolajczyk, Virtual Aid Design of Geometric and Kinematics Flexible Tools. XII Workshop on Supervising and Diagnostics of Machining Systems. Virtual Manufacturing, Karpacz, Poland (2001) 145-152.
Google Scholar
[6]
T. Mikolajczyk, Nóż tokarski uniwersalny. (Universal Turning Tool – in polish) Zeszyty Naukowe nr 231, Mechanika 49, ATR Bydgoszcz (2000) 95-101.
Google Scholar
[7]
T. Mikolajczyk, Manufacturing using Robot. Advanced Materials Research 463 (2012) 1643-1646.
DOI: 10.4028/www.scientific.net/amr.463-464.1643
Google Scholar
[8]
T. Mikolajczyk, L. Kamieniecki, PC Controlled Turning Tool. Applied Mechanics and Materials, 325-326 (2013) 1110-1114.
DOI: 10.4028/www.scientific.net/amm.325-326.1110
Google Scholar
[9]
T. Mikolajczyk, L. Romanowski, S. Sojka, Model of Mechatronics Robots Tool with Controlled Geometry. Applied Mechanics and Materials 436 (2013) 382-389.
DOI: 10.4028/www.scientific.net/amm.436.382
Google Scholar
[10]
T. Mikołajczyk, Tworzenie narzędzia elastycznego geometryczno-kinematycznie (Creating a Geometric and Kinematically Flexible Tool – in polish), Inżynieria i Aparatura Chemiczna, 2 (2009) 100-101.
Google Scholar
[11]
www. dandrea. com.
Google Scholar
[12]
www. kometgroup. com/en/tools-navigation/tools/mechatronic. html.
Google Scholar
[13]
www. mapal. com/fileadmin/00_PDF-Dateien/Kataloge/en/MAPAL_Tooltronic_en. pdf.
Google Scholar
[14]
www. machsupport. com.
Google Scholar
[15]
www. cnc. info. pl.
Google Scholar
[16]
L. Ciupitu, A. Olaru and S. Toyama, On the Controlling of Spherical Ultrasonic Motor. Applied Mechanics and Materials, 325-326 (2013) 1115-1125.
DOI: 10.4028/www.scientific.net/amm.325-326.1115
Google Scholar
[17]
K. Grosmann, A. Muhl, J. Muller and A. Schwenn, Mit der Mikroachse, genauer drehen. Werkstatt und Betrieb, 136/7-8 (2003) 51-54.
Google Scholar
[18]
A. Borboni, F. Aggogeri and R. Faglia, Design and Analysis of a Fibre-shaped Micro-actuator for Robotic Gripping. International Journal of Advanced Robotic Systems 10(149) (2013) 1-10.
DOI: 10.5772/55539
Google Scholar
[19]
T. Mikolajczyk, K. Bednarczyk and A. Mikolajczyk, Model of Human Hand Controlled Using Pneumatic Muscles, Applied Mechanics and Materials, 555 (2014) 155-162.
DOI: 10.4028/www.scientific.net/amm.555.155
Google Scholar
[20]
A. Borboni, E. Ceretti, A. Copeta, D. Moscatelli, R. Faglia, and A. Attanasio, High precision machine based on a differential mechanism. ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis ESDA 2014, 2 (2014) 1-7.
DOI: 10.1115/esda2014-20078
Google Scholar
[21]
www. youtube. com/watch?v=oAEh0OdQWVo (Sanguinololu Atmega 1284P Marlin - TEST RepRap Prusa ).
Google Scholar
[22]
T. Malinowski, T. Mikolajczyk and A. Olaru, Control of Articulated Manipulator Model Using ATMEGA16. Applied Mechanics and Materials, 555 (2014) 155-162.
DOI: 10.4028/www.scientific.net/amm.555.147
Google Scholar
[23]
F. Aggogeri, A. Borboni, A. Merlo, and N. Pellegrini, Machine Tools Thermostabilization using Passive Control Strategies, Advanced Materials Research, 590 (2012) 252-257.
DOI: 10.4028/www.scientific.net/amr.590.252
Google Scholar