A Fuzzy Algorithm to Study the Inverse Kinematics Problem of a Serial Manipulator

Article Preview

Abstract:

This paper presents a fuzzy logic to solve the inverse kinematics problem. As the complexity of robot increases, obtaining the inverse kinematics solution requires the solution of non linear equations having transcendental functions are difficult and computationally expensive. This study focuses on a serial manipulator modelled as a serial chain of rigid bodies connected by joints. A new fuzzy interactive algorithm is developed and the effectiveness is compared with other methods on a SCARA robot. It converge in all the developed simulations showing a robust performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-82

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. D'Souza, S. Vijayakumar, S. Schaal: Learning inverse kinematics, International Conference on Intelligent Robots and Systems, IROS, IEEE, Maui, Hawai, USA, (2001), pp.298-303.

Google Scholar

[2] M. Raghavan M., B. Roth: Inverse Kinematics of the General 6R Manipulator and Related Linkages, ASME Trans. J. of Mechanical Design 115 (1993) pp.502-508.

DOI: 10.1115/1.2919218

Google Scholar

[3] A. Borboni, F. Aggogeri, R. Faglia: Fast Kinematic Model of a Seven-Bar Linkage With a Single Compliant Link, Proceeding of 12th Biennial Conference on Engineering Systems Design and Analysis, Volume 3, (2014).

DOI: 10.1115/esda2014-20076

Google Scholar

[4] S. Kumar, N. Patel, L. Behera: Visual motor control of a 7 dof robot manipulator using function decomposition and sub-clustering in configuration, Neural Processing Letters 28 (1), (2008), pp.17-33.

DOI: 10.1007/s11063-008-9079-8

Google Scholar

[5] F. Aggogeri, F. Al-Bender, B. Brunner, M. Elsaid, M. Mazzola, A. Merlo, D. Ricciardi, M. de la O Rodriguez, E. Salvi: Design of piezo-based AVC system for machine tool applications, Mechanical Systems and Signal Processing, Vol. 36 (2013), pp.53-65.

DOI: 10.1016/j.ymssp.2011.06.012

Google Scholar

[6] F. Aggogeri, A. Borboni, R. Faglia, A. Merlo, S. De Cristofaro: Precision Positioning Systems: An overview of the state of art, Applied Mechanics and Materials 336-338 (2013), pp.1170-1173.

DOI: 10.4028/www.scientific.net/amm.336-338.1170

Google Scholar

[7] T.C. Hsia, Z.Y. Guo: New inverse kinematic algorithms for redundant robots, Journal of Robotics Systems 8 (1), (1991), pp.117-132.

DOI: 10.1002/rob.4620080108

Google Scholar

[8] G. Tevatia, S. Schaal: Inverse kinematics of humanoid robots, in: Proc. of IEEE Int. Conf. on Robotics and Automation, San Francisco, CA, (2000), pp.294-299.

DOI: 10.1109/robot.2000.844073

Google Scholar

[9] A. Borboni, R. Faglia, G. Resconi, M. Tiboni: Kinematic Synthesis and Analysis in robotics by the morphogenetic neuron, Proceedings of EuroCast 2001 Conference, (2001).

DOI: 10.1007/3-540-45654-6_28

Google Scholar

[10] F. Aggogeri, A. Borboni, R. Faglia: Reliability roadmap for mechatronic systems, Applied Mechanics and Materials 373-375 (2013), pp.130-133.

DOI: 10.4028/www.scientific.net/amm.373-375.130

Google Scholar

[11] A. A. H. Sallam, W. M. F. Abouzaid: NXT* SCARA Model Based Design Controlled by Neural Network, International Journal of Control Science and Engineering 3(3) (2013), pp.86-94.

Google Scholar

[12] P.J. Alsina, N.S. Gehlot: Robot inverse kinematics: a modular neural network approach, Proceedings of 38th Midwest Symposiumon Circuits and Systems,vol.2,(1995), p.631–634.

DOI: 10.1109/mwscas.1995.510169

Google Scholar

[13] Y.Xia, J.Wang: A dual neural network for kinematic control of redundant robot manipulators, IEEE Transactions on Systems, Man, and Cybernetics, Part B 31(1), (2001), p.147–154.

DOI: 10.1109/3477.907574

Google Scholar

[14] M.L. Husty, M.Pfurner and H.P. Schrocker: A new and efficient algorithm for the inverse kinematics of a general serial 6r manipulator, Mechanism and Machine Theory 42, (2007), pp.66-81.

DOI: 10.1016/j.mechmachtheory.2006.02.001

Google Scholar

[15] P.J. Angeline, G.M. Saunders, J.B. Pollack: An evolutionary algorithm that constructs recurrent neural networks, IEEE Transactions on Neural Networks 5 (1), (1994), p.54–65.

DOI: 10.1109/72.265960

Google Scholar

[16] S.Alavandar, M.J. Nigam: Neuro-fuzzy based approach for inverse kinematics solution of industrial robot manipulators, Int. J. of Computers, Communications & Control, 3, (2008), pp.224-234.

DOI: 10.15837/ijccc.2008.3.2391

Google Scholar

[17] S.García, A.Fernández, J.Luengo, F.Herrera: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power, Information Sciences 180, (2010), p.2044–(2064).

DOI: 10.1016/j.ins.2009.12.010

Google Scholar

[18] T.D. Pham: An optimally wieghted fuzzy k-NN algorithm, Proceedings of the Third International Conference on Advances in Pattern Recognition, Part I, Bath, UK, (2005), p.239–247.

Google Scholar

[19] Y.Qu, C.Shang, Q.Shen, N.M. Parthaláin, W.Wu: Kernel-based fuzzy-rough nearest neighbour classification, IEEE International Conference on Fuzzy Systems, Taipei, Taiwan, (2011), p.1523–1529.

DOI: 10.1109/fuzzy.2011.6007401

Google Scholar

[20] R.J. Hathaway, J.C. Bezdek, W. Pedrycz: A Parametric Model for Fusing Heterogeneous Fuzzy Data, IEEE Trans. On Fuzzy Systems 4(3) (1996), pp.270-281.

DOI: 10.1109/91.531770

Google Scholar

[21] S.S. Rao, L.Chen: Numerical solution of fuzzy linear equations in engineering analysis, Internat.J. Numer. Methods Eng. 43, (1998), p.391–408.

DOI: 10.1002/(sici)1097-0207(19981015)43:3<391::aid-nme417>3.0.co;2-j

Google Scholar

[22] A.S. Balu, B.N. Rao: Efficient explicit formulation for practical fuzzy structural analysis, Sadhana 36 (4), (2011), p.463–488.

DOI: 10.1007/s12046-011-0035-3

Google Scholar