Performance Development of Space Vector Pulse Width Modulation for Induction Motor Drive Using Artificial Intelligence

Article Preview

Abstract:

Space vector pulse width modulation (SVPWM) technique is an advanced computation-intensive PWM method. It is the best among all PWM techniques for three-phase induction motor (TIM) drive applications because of its superior performance characteristics. In this paper, the use of artificial neural network (ANN) based SVPWM technique avoids the computational complex used in conventional SVM implementation. An ANN scheme structure is suggested to identify and approximate the conventional SVPWM for decrease the computational problem. Moreover, proportional-integral (PI) controller tuning is achieved using a particle swarm optimization (PSO) algorithm to improve the TIM speed controller’s response performance. By designing an appropriate PSO algorithm, kp and ki of the PI speed controller parameters are tuned for TIM to attain the best parameter values.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

146-150

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Saleem, R. Issa, T. Tutunji, Hardware-In-the-Loop for on-line identification and control of three-phase squirrel cage induction motors, Simul. Model Pract. Theory 18 (2010) 277-290.

DOI: 10.1016/j.simpat.2009.11.002

Google Scholar

[2] O. S. Ebrahim, A. Badr, P. K. Jain, ANN-Based Optimal Energy Control of Induction Motor Drive in Pumping Applications, IEEE Trans. Energy Convers. 25 (2010) 652-660.

DOI: 10.1109/tec.2010.2041352

Google Scholar

[3] M. V. Rajkumar, P.S. Manoharan, A. Ravi, Simulation and an experimental investigation of SVPWM technique on a multilevel voltage source inverter for photovoltaic systems, Int. J. Electr. Power Energy Syst. 52 (2013) 116-131.

DOI: 10.1016/j.ijepes.2013.03.022

Google Scholar

[4] Md. M. Hasan, S. Mekhilef, M. Ahmed, Three-phase hybrid multilevel inverter with less power electronic components using space vector modulation, IET Power Electronics, 5 (2014) pp.1256-1265.

DOI: 10.1049/iet-pel.2013.0237

Google Scholar

[5] G. Durgasukumar, M.K. Pathak, Comparison of adaptive Neuro-Fuzzy-based space-vector modulation for two-level inverter, Int. J. Electr. Power Energy Syst. 38 (2012) 9–19.

DOI: 10.1016/j.ijepes.2011.10.017

Google Scholar

[6] A. M. Sani, S. Filizadeh, An Optimized Space Vector Modulation Sequence for Improved Harmonic Performance, IEEE Trans. Ind. Electron. 56 (2009) 2894-2903.

DOI: 10.1109/tie.2008.2008997

Google Scholar

[7] M. Gaballah, M. El-Bardini, Low cost digital signal generation for driving space vector PWM inverter, Ain Shams Engineering Journal 4 (2013) 763–774.

DOI: 10.1016/j.asej.2013.02.004

Google Scholar

[8] S A. H. Mutlag, H. Shareef, A. Mohamed, M. A. Hannan, J. A. Ali, An Improved Fuzzy Logic Controller Design for PV Inverters Utilizing Differential Search Optimization, International Journal of Photoenergy (2014) 1-14.

DOI: 10.1155/2014/469313

Google Scholar

[9] T. H. Santos, A. Goedtel, S. A. Silva, M. Suetake, Scalar control of an induction motor using a neural sensorless technique, Electr. Power Syst. Res. 108 (2014) 322-330.

DOI: 10.1016/j.epsr.2013.11.020

Google Scholar

[10] Y. C. Luo, W. Chen, M. Suetake, Sensorless stator field orientation controlled induction motor drive with a fuzzy speed controller, Comput. Math. Appl. 64 (2012) 1206-1216.

DOI: 10.1016/j.camwa.2012.03.064

Google Scholar

[11] H. R. Mohammadi, A. Akhavan, Parameter Estimation of Three-Phase Induction Motor Using Hybrid of Genetic Algorithm and Particle Swarm Optimization, Journal of Engineering (2014) 1-6.

DOI: 10.1155/2014/148204

Google Scholar