Performance and Emission Studies of Biodiesel Fuelled Diesel Engines: A Review

Article Preview

Abstract:

As the decreasing availability of the fossil fuel is rising day by day, the search of alternate fuel that can be used as a substitute to the conventional fuels is rising rapidly. Especially, the exhaust gas emission by using fossil fuel insists on exploring the available sources of biofuel to provide an eco-friendly environment compared to that of fossil fuels. India depends mainly on imported fuels due to lack of fossil fuel reserves and it has a great impact on the economy. Biodiesel is one of the best available resources that has come to the forefront recently. Recent studies and research have made it possible to extract biodiesel at economical costs and quantities. The blend of biodiesel with fossil diesel has many benefits like reduction in emissions, lower engine wear, reduction in engine oil consumption and comparable thermal efficiency with diesel. It is also found that low fuel consumption and increase in thermal efficiency of engines for biodiesel fuels having higher calorific values than diesel. This paper reviews the performance and emission characteristics of various biodiesel fuels used in CI engine as alternate fuel. This study is based on the reports of biodiesel fuel published by different researchers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

797-802

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Altin, S. Cetinkaya, H. S. Yucesu, The potential of using vegetable oil fuels as fuel for diesel engines, Energy Conversion and Management. 42 (2001) 529-538.

DOI: 10.1016/s0196-8904(00)00080-7

Google Scholar

[2] U. Rashid, F. Anwar, Production of biodiesel through optimized alkalinecatalyzed transesterification of rapeseed oil, Fuel. 87 (2008) 265-273.

DOI: 10.1016/j.fuel.2007.05.003

Google Scholar

[3] L. Reijnders, M. A. J. Huijbregts, Biogenic greenhouse gas emissions linked to the life cycles of biodiesel derived from European rapeseed and Brazilian soybeans, Journal of Cleaner Production. 16 (2008) 1943-(1948).

DOI: 10.1016/j.jclepro.2008.01.012

Google Scholar

[4] W. Thompson, S. Meyer, T. Green, The US biodiesel use mandate and biodiesel feedstock markets, Biomass & Bioenergy. 34 (2010) 883-889.

DOI: 10.1016/j.biombioe.2010.01.033

Google Scholar

[5] A. J. Kinney, T. E. Clemente, Modifying soybean oil for enhanced performance in biodiesel blends, Fuel Processing Technology. 86 (2005) 1137-1147.

DOI: 10.1016/j.fuproc.2004.11.008

Google Scholar

[6] Y. C. Sharma, B. Singh, Development of biodiesel: current scenario, Renewable & Sustainable Energy Reviews. 13 (2009) 1646-1651.

DOI: 10.1016/j.rser.2008.08.009

Google Scholar

[7] M. H. Jayed, H. H Masjuki, R. Saidur, M. A. Kalam, M. I. Jahirul, Environmental aspects and challenges of oilseed produced biodiesel in Southeast Asia, Renewable & Sustainable Energy Reviews. 13 (2009) 2452-2462.

DOI: 10.1016/j.rser.2009.06.023

Google Scholar

[8] P. Nakpong, S. Wootthikanokkhan, High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand, Renewable Energy. 35 (2010) 1682-1687.

DOI: 10.1016/j.renene.2009.12.004

Google Scholar

[9] S. Jain, M. P. Sharma, Prospects of biodiesel from Jatropha in India: a review, Renewable & Sustainable Energy Reviews. 14 (2010) 763-771.

DOI: 10.1016/j.rser.2009.10.005

Google Scholar

[10] K. Openshaw, A review of Jatropha curcas: an oil plant of unfulfilled promise, Biomass & Bioenergy. 19 (2000) 1-15.

DOI: 10.1016/s0961-9534(00)00019-2

Google Scholar

[11] M. Naik, L. C. Meher, S. N. Naik, L. M. Das, Production of biodiesel from high free fatty acid Karanja (Pongamia pinnata) oil, Biomass & Bioenergy. 32 (2008) 354-357.

DOI: 10.1016/j.biombioe.2007.10.006

Google Scholar

[12] R. Sarin, M. Sharma, S. Sinharay, R. K. Malhotra, Jatropha-Palm biodiesel blends: an optimum mix for Asia, Fuel. 86 (2007) 1365-1371.

DOI: 10.1016/j.fuel.2006.11.040

Google Scholar

[13] L. Canoira, J. G. Galean, R. Alcantara, M. Lapuerta, R. Garcia-Contreras, Fatty acid methyl esters (FAMEs) from castor oil: production process assessment and synergistic effects in its properties, Renewable Energy. 35 (2010) 208-217.

DOI: 10.1016/j.renene.2009.05.006

Google Scholar

[14] S. Chongkhong, C. Tongurai, P. Chetpattananondh, C. Bunyakan, Biodiesel production by esterification of palm fatty acid distillate, Biomass & Bioenergy. 31 (2007) 563-568.

DOI: 10.1016/j.biombioe.2007.03.001

Google Scholar

[15] S. Kalligeros, F. Zannikos, S. Stournas, E. Lois, G. Anastopoulos, C. Teas, F. Sakellaropoulos, An investigation of using biodiesel/marine diesel blends on the performance of a stationary diesel engine, Biomass & Bioenergy. 24 (2003) 141-149.

DOI: 10.1016/s0961-9534(02)00092-2

Google Scholar

[16] U. Rashid, F. Anwar, G. Knothe, Evaluation of biodiesel obtained from cottonseed oil, Fuel Processing Technology. 90 (2009) 1157-1163.

DOI: 10.1016/j.fuproc.2009.05.016

Google Scholar

[17] S. Caynak, M. Guru, A. Bicer, A. Keskin, Y. Icingur, Biodiesel production from pomace oil and improvement of its properties with synthetic manganese additive, Fuel. 88 (2009) 534-538.

DOI: 10.1016/j.fuel.2008.09.031

Google Scholar

[18] M. G. Kulkarni, A. K. Dalai, N. N. Bakhshi, Transesterification of canola oil in mixed methanol/ethanol system and use of esters as lubricity additive, Bioresource Technology. 98 (2007) 2027-(2033).

DOI: 10.1016/j.biortech.2006.08.025

Google Scholar

[19] C. Kaya, C. Hamamci, A. Baysal, O. Akba, S. Erdogan, A. Saydut, Methyl ester of peanut (Arachis hypogea L. ) seed oil as a potential feedstock for biodiesel production, Renewable Energy. 34 (2009) 1257-1260.

DOI: 10.1016/j.renene.2008.10.002

Google Scholar

[20] P. K. Sahoo, L. M. Das, Process optimization for biodiesel production from Jatropha Karanja and Polanga oils, Fuel. 88 (2009) 1588-1594.

DOI: 10.1016/j.fuel.2009.02.016

Google Scholar

[21] Ayhan Demirbas, Progress and recent trends in biodiesel fuels, Energy Conversion and Management. 50 (2009) 14-34.

DOI: 10.1016/j.enconman.2008.09.001

Google Scholar

[22] Dennis Y. C. Leung, Xuan Wu, M. K. H. Leung, A review on biodiesel production using catalyzed transesterification, Applied Energy. 87 (2010) 1083–1095.

DOI: 10.1016/j.apenergy.2009.10.006

Google Scholar

[23] M. P. Dorado, E. Ballesteros, J. M. Arnal, J. Gomez, F. J. Lopez, Exhaust emissions from a diesel engine fueled with transesterified waste olive oil, Fuel. 82 (2003) 1311–1315.

DOI: 10.1016/s0016-2361(03)00034-6

Google Scholar

[24] C. C. Enweremadu, H. L. Rutto, Combustion, emission and engine performance characteristics of used cooking oil biodiesel - A review, Renewable and Sustainable Energy Reviews 14 (2010) 2863–2873.

DOI: 10.1016/j.rser.2010.07.036

Google Scholar

[25] N. R. Banapurmatha, P. G. Tewaria, R. S. Hosmathb, Performance and emission characteristics of a DI compression ignition engine operated on Honge, Jatropha and sesame oil methyl esters, Renewable Energy. 33 (2008) 1982-(1988).

DOI: 10.1016/j.renene.2007.11.012

Google Scholar

[26] M. Pugazhvadivu, K. Jeyachandran, Investigations on the performance and exhaust emissions of a diesel engine using preheated waste frying oil as fuel, Renewable Energy. 30 (2005) 2189-2202.

DOI: 10.1016/j.renene.2005.02.001

Google Scholar

[27] Deepak Agarwal, Avinash Kumar Agarwal, Performance and emission characteristics of Jatropha oil (preheated and blends) in a direct injection compression ignition engine, Applied Thermal Engineering. 27 (2007) 2314-2323.

DOI: 10.1016/j.applthermaleng.2007.01.009

Google Scholar

[28] M. K. Baiju, L. M. Naik, L. M. Das, A comparative evaluation of compression ignition engine characteristics using methyl and ethyl esters of Karanja oil, Renewable Energy. 34 (2009) 1616–1621.

DOI: 10.1016/j.renene.2008.11.020

Google Scholar

[29] Avinash Kumar Agarwal, K. Rajamanoharan, Experimental investigations of performance and emissions of Karanja oil and its blends in a single cylinder agricultural diesel engine, Applied Energy. 86 (2009) 106–112.

DOI: 10.1016/j.apenergy.2008.04.008

Google Scholar

[30] M. D. Nurun Nabi, M. D. Mustafizur Rahman, M. D. Shamim Akhter, Biodiesel from cotton seed oil and its effect on engine performance and exhaust emissions, Applied Thermal Engineering. 29 (2009) 2265-2270.

DOI: 10.1016/j.applthermaleng.2008.11.009

Google Scholar

[31] Tizane Daho, Gilles Vaitilingom, Salifou koucka Ouiminga, Bruno Piriou, Augustin S. Zongo, Samuel Ouoba, Jean Koulidiati, Influence of engine load and fuel droplet size on performance of a CI engine fueled with cottonseed oil and its blends with diesel fuel, Applied Energy. 111 (2013).

DOI: 10.1016/j.apenergy.2013.05.059

Google Scholar

[32] K. Purushothaman, G. Nagarajan, Performance, emission and combustion characteristics of a compression ignition engine operating on neat orange oil, Renewable Energy. 34 (2009) 242–245.

DOI: 10.1016/j.renene.2008.03.012

Google Scholar

[33] Sehmus Altun, Hu samettin Bulut, Cengiz Oner, The comparison of engine performance and exhaust emission characteristics of sesame oil–diesel fuel mixture with diesel fuel in a direct injection diesel engine, Renewable Energy. 33 (2008) 1791–1795.

DOI: 10.1016/j.renene.2007.11.008

Google Scholar

[34] A. S. Ramadhas, C. Muraleedharan, S. Jayaraj, Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil, Renewable Energy. 30 (2005) 1789–1800.

DOI: 10.1016/j.renene.2005.01.009

Google Scholar

[35] D. H. Qi, L. M. Geng, H. Chen, Y. ZH. Bian, J. Liu, X. CH. Ren, Combustion and performance evaluation of a diesel engine fuelled with biodiesel produced from soybean crude oil, Renewable Energy. 34 (2009) 2706–2713.

DOI: 10.1016/j.renene.2009.05.004

Google Scholar

[36] B. Prem Anand, C. G. Saravanan, C. Ananda Srinivasan, Performance and exhaust emission of turpentine oil powered direct injection diesel engine, Renewable Energy. 35 (2010) 1179–1184.

DOI: 10.1016/j.renene.2009.09.010

Google Scholar

[37] P. K. Devan, N. V. Mahalakshmi, A study of the performance, emission and combustion characteristics of a compression ignition engine using methyl ester of paradise oil–eucalyptus oil blends, Applied Energy. 86 (2009) 675–680.

DOI: 10.1016/j.apenergy.2008.07.008

Google Scholar

[38] K. Muralidharan, D. Vasudevan, Performance, emission and combustion characteristics of a variable compression ratio engine using methyl esters of waste cooking oil and diesel blends, Applied Energy. 88 (2011) 3959–3968.

DOI: 10.1016/j.apenergy.2011.04.014

Google Scholar