Electrolytes for Sustainable Laser-Chemical Machining of Titanium, Stellite 21 and Tool Steel X110CrMoV8-2

Article Preview

Abstract:

Laser-chemical micro structuring offers a possibility to process particular metals nearly without any mechanical or thermal stress. The required electrolyte depends on the respective chemical composition of the specific metal. The presented results demonstrate the possibilities for laser-chemical machining of titanium, Stellite 21 and tool steel X110CrMoV82 for use in medical applications and micro tool manufacturing with respect to the engineering requirements. Furthermore, first results are shown depending on the identification of more environmentally friendly electrolytes to meet the everincreasing environmental and industrial standards.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

262-269

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Brinksmeier, O. Riemer, M. Klopfstein, S. Twardy, Mikrofräsen und thermochemisches Abtragen: Verfahrensfortschritte im Mikroformenbau, in: 4. Kolloquium Mikroproduktion, BIAS Verlag, Bremen, 2009, pp.229-234.

Google Scholar

[2] D. Zhu, N.S. Qu, H.S. Li, Y.B. Zeng, D.L. Li, S.Q. Qian, Electrochemical micromachining of microstructures of micro hole and dimple array, Ann. CIRP 58/1 (2009) 177-180.

DOI: 10.1016/j.cirp.2009.03.004

Google Scholar

[3] S. Ali, S. Hinduja, J. Atkinson, M. Pandya, Shaped tube electrochemical drilling of good quality holes, Ann. CIRP 58/1 (2009) 185-188.

DOI: 10.1016/j.cirp.2009.03.070

Google Scholar

[4] C. H. Jo, B. H. Kim, C. N. Chu, Micro electrochemical machining for complex internal micro features, Ann. CIRP 58 (2009) 181-184.

DOI: 10.1016/j.cirp.2009.03.072

Google Scholar

[5] C. A. Huang, W. Lin, S. C. Lin, The electrochemical polishing behaviour of P/M high-speed steel (ASP 23) in perchloric-acetic mixied acids, Corrosion Science 45 (2003) 2627-2638.

DOI: 10.1016/s0010-938x(03)00083-0

Google Scholar

[6] A. Stephen, F. Vollertsen, 3D microstructuring of mold inserts by laser-based removal, in: H. Baltes, O. Brand, G.K. Fedder, C. Hierold, J. Korvink, O. Tabata (Eds. ), Microengineering of Metals and Ceramics, Wiley-VCH Weinheim (2005) 132-159.

DOI: 10.1002/9783527616725.ch6

Google Scholar

[7] A. Stephen, R. Walther, F. Vollertsen, Removal rate model for laser chemical micro etching. Proceedings of the Fifth International WLT-Conference on Laser in Manufacturing (2009) 615-619.

Google Scholar

[8] S. Mehrafsun, F. Vollertsen, Disturbance of material removal in laser-chemical machining by emerging gas, Ann CIRP 62/1 (2013) 195-198.

DOI: 10.1016/j.cirp.2013.03.030

Google Scholar

[9] A. Mora, M. Haase, Discrete Model for Laser Driven Etching and Microstructuring of Metallic Surfaces, Physical Review 72 (2005) 061604.

DOI: 10.1103/physreve.72.061604

Google Scholar

[10] H. Messaoudi, S. Mehrafsun, F. Vollertsen, Influence of the etchant on material removal geometry in laser chemical machining, Proceedings of the 4th International Conference on Nanomanufacturing (nanoMan2014) 08. -10. 07. 2014 Bremen (CD-Rom).

Google Scholar