The Lubrication Properties of Microbial Cells and their Biopolymers

Article Preview

Abstract:

Many machining operations e.g. turning, milling or grinding are dependent on the application of water-based metalworking fluids (MWF) which contribute significantly to their high level of performance. MWF in-use are exposed to a microbial contamination, which leads to a deterioration of water-based MWF components and can cause a premature failure of the whole coolant system. Expensive monitoring and the addition of biocides are needed to maintain the MWF quality and to reduce the microbial load, regardless of the potential risk for health and environment. To overcome these limitations, the paradigm shift of using microorganisms as a replacement for conventional MWF is investigated in this paper. Microbial cell components and some microbial inclusions are comparable to conventional MWF components like e.g. fatty acids or sulfur compounds. Due to this fact, it is possible to create a regenerative system on a microbiological basis for the substitution of conventional MWF components. In preliminary tribological investigations the basic lubrication properties of microorganisms and their potential as a replacement for conventional MWF were shown. The presented approach intends to investigate the influence of microbial cell counts, cells size and extracellular polymeric substances (EPS) on the lubrication behavior respectively. The results of the tribological tests show that especially microorganisms with a big cell volume or a high EPS productivity exhibit superior Brugger-values (up to 174%) compared to a highly concentrated conventional MWF (emulsion 10%) and indicate the great potential of microorganisms as a replacement for conventional MWF.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

285-291

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Nasmyth, J.: An Autobiography, John Murray, London, 1883.

Google Scholar

[2] Taylor, F. W.: On the Art of Cutting Metals, The American Society of Mechanical Engineers, New York, (1906).

Google Scholar

[3] N.N.: VDI 3397 Blatt 1: 2007-05, Kühlschmierstoffe für spanende und umformende Fertigungsverfahren, Beuth Verlag, (2007).

Google Scholar

[4] Stear, M.: Metalworking Fluids-Clearing Away the Mist, The Annals of Occupational Hygiene, 49/4, 2005, pp.279-281.

DOI: 10.1093/annhyg/mei016

Google Scholar

[5] Houghton, E. F.: Causes of Skin-Sores and Boils Among Metal Workers: An Investigation by the Houghton Research Staff, British Journal of Dermatology, 33/8-9, 1921, pp.306-307.

Google Scholar

[6] Lee, M.; Chandler A. C.: A Study of the Nature, Growth and Control of Bacteria in Cutting Compounds, Journal of Bacteriology, 1941, pp.373-386.

Google Scholar

[7] Fabian, F. W.; Pivnick, H.: Growth of Bacteria in Soluble Oil Emulsions, Applied Microbiology, 1, 1953, pp.199-203.

DOI: 10.1128/am.1.4.199-203.1953

Google Scholar

[8] Hill, E. C.: The Microbiology of Industrial Lubricants and Emulsions, The Transactions of the Society of Occupational Medicine, 19, 1969, pp.93-96.

Google Scholar

[9] Veillette, M.; Thorne, P. S.; Gordon, T.; Duchaine, C.: Six Month Tracking of Microbial Growth in a Metalworking Fluid after System Cleaning and Recharging, The Annals of Occupational Hygiene, 48/6, 2004, pp.541-546.

DOI: 10.1093/annhyg/meh043

Google Scholar

[10] Rabenstein, A.; Koch, T.; Remesch, M.; Brinksmeier, E.; Kuever, J.: Microbial degradation of water miscible metal working fluids, International Biodeterioration & Biodegradation, 63/8, 2009, pp.1023-1029.

DOI: 10.1016/j.ibiod.2009.07.005

Google Scholar

[11] Koch, T.; Rabenstein, A.; Garbrecht, M.: Mikrobielle Beeinflussung von wassergemischten Kühlschmierstoffen, Mineralöltechnik, 52/5, 2007, pp.2-27.

Google Scholar

[12] Koch, T.: Auswirkung des mikrobiellen Befalls von wassergemischten Kühlschmierstoffen auf das Zerspanergebnis (Teil 3), HTM – Härterei-technische Mitteilungen, 63/2, 2008, pp.115-132.

DOI: 10.3139/105.100451

Google Scholar

[13] Palmowski, B.; Huesmann-Cordes, A. -G.; Kuschel, S.; Meyer, D.; Weinhold, M.X.; Brinksmeier, E.: Identification of marker substances for the efficient online monitoring of metal working fluids, Maintenance and Tribotechnology, LUBMAT 2014, Manchester, UK, (2014).

Google Scholar

[14] Redetzky, M.; Rabenstein, A.; Brinksmeier, E.: Tribologische Untersuchungen zur Wirksamkeit mikrobieller Zellbestandteile, Gesellschaft für Tribologie e.V., 54. Tribologie-Fachtagung, Band 1, 2013, p.24/1 - 9.

Google Scholar

[15] Schulte, S.; Flemming, H. -C.: Ursachen der erhöhten Resistenz von Mikroorganismen in Biofilmen, Chemie Ingenieur Technik, 78, 2006, pp.1683-1689.

DOI: 10.1002/cite.200600088

Google Scholar