Process Planning and Decentralised Process Control for Cybertronic Production Systems

Article Preview

Abstract:

Cybertronic systems which augment mechatronic basis systems by means of communication, collaboration and intelligence are proposed to be utilised to develop next generation production systems. A model-based development process is proposed to enable integrated design and development of the product and the production system. This paper will highlight the importance of process planning as collaborative activity within the integrated design and development process. A concept will be introduced how process planning can be conducted for cybertronic production systems, considering decentralised production planning and control already during the design phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

486-493

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Chemnitz, J. Kruger, M. Patzlaff, E. -O. Tuguldur, SOPRO - Advancements in the Self-organising Production, Proceedings of the IEEE Conference on Emerging Technologies and Factory Automation (2010) 1-4.

DOI: 10.1109/etfa.2010.5641198

Google Scholar

[2] M. Broy, E. Geisberger, Cyber-Physical Systems - Innovationsmotor für Mobilität, Gesundheit, Energie und Produktion (acatech POSITION), Springer, Heidelberg, (2011).

Google Scholar

[3] M. Eigner, D. Roubanov, R. Zafirov, Modellbasierte, virtuelle Produktentwicklung, Springer, Berlin, (2014).

DOI: 10.1007/978-3-662-45874-7

Google Scholar

[4] H. Meissner, M. Cadet, N. Stephan, C. Bohr, Model-Based Development Process of Cybertronic Products and Production Systems, Advanced Materials Research Vol. 1018 – Proceedings of the WGP Congress 2014 – Progress in Production Engineering, (2014).

DOI: 10.4028/www.scientific.net/amr.1018.539

Google Scholar

[5] M. Eigner, J.C. Aurich, W. Koch, Cybertronische Produkte und Produktionssysteme - Konzept zur integrierten Entwicklung, Prductivity Management 18 (2013) 1, pp.17-20.

Google Scholar

[6] G. Pahl, W. Beitz, Konstruktionslehre, Methoden und Anwendung erfolgreicher Produktentwicklung, 8th ed,. Springer Vieweg, Heidelberg, (2013).

DOI: 10.1007/978-3-642-29569-0

Google Scholar

[7] S. Friedenthal, R. Steiner, A. Moore, A Practical Guide to SysML – The Systems Modeling Language, Morgan Kaufmann, San Francisco, (2009).

Google Scholar

[8] Technical Operations International Council on Systems Engineering (INCOSE): Systems Engineering Vision (2007).

Google Scholar

[9] W. Kühn, Digital Factory – Simulation enhancing the product and production engineering process, Proceedings of the 2006 Winter Simulation Conference, (2006), p.1899-(1906).

DOI: 10.1109/wsc.2006.322972

Google Scholar

[10] A. Verl, A. Lechler, Steuerung aus der Cloud, in: T. Bauernhansel, M. ten Hompel, B. Vogel-Heuser (Eds. ), Industrie 4. 0 in Produktion, Automatisierung und Logistik, Springer, Wiesbaden, 2014, pp.235-248.

DOI: 10.1007/978-3-658-04682-8_12

Google Scholar

[11] B. Scholz-Reiter, M. Görges, T. Philipp, Autonomously controlled production systems - Influence of autonomous control level on logistic performance, CIRP Annals - Manufacturing Technology 58 (2009), p.395–398.

DOI: 10.1016/j.cirp.2009.03.011

Google Scholar

[12] J. Gausemeier, U. Frank, J. Donoth, S. Kahl, Specification technique for the description of self-optimizing mechatronic systems, Research in Engineering Design 20 (2009), pp.201-223.

DOI: 10.1007/s00163-008-0058-x

Google Scholar

[13] T. Philipp, C. de Beer, K. Windt, B. Scholz-Reiter, Evaluation of Autonomous Logistic Processes - Analysis of the Influence of Structural Complexity, in: M. Hülsmann, K. Windt (Eds. ), Understanding Autonomous Cooperation & Control in Logistics - The Impact on Management, Information and Communication and Material Flow, Springer, Berlin, (2007).

DOI: 10.1007/978-3-540-47450-0_20

Google Scholar

[14] J. D. Gehrke, O. Herzog, H. Langer, R. Malaka, R. Porzel, T. Warden, An Agent-based Approach to Autonomous Logistic Processes, Künstliche Intelligenz, 24 (2010), pp.137-141.

DOI: 10.1007/s13218-010-0027-1

Google Scholar

[15] M. Rubenstein, A. Cornejo, R. Nagpal, Programmable self-assembly in a thousand-robot swarm, Science, 345 (2014) 6198, pp.795-799.

DOI: 10.1126/science.1254295

Google Scholar

[16] C. Laue, Methodik für eine selbstoptimierende Produktionssteuerung, Forschungsberichte IWB, Band 238, PhD Thesis, Univeristy of Munich, (2010).

Google Scholar

[17] E. L. McDuffie, M. Cristofari, F. Caron, M. Tronci, W.J. Wolfe, S.E. Sorensen, Scheduling Systems and techniques in Flexible Manufacturing Systems, CRC Press, Boca Raton, (2001).

DOI: 10.1201/9780429124303-7

Google Scholar

[18] A. McKay, G. N. Stiny, A. de Pennington, Principles for the definition of design structures, International Journal of Computer Integrated Manufacturing (2015).

DOI: 10.1080/0951192x.2014.1003412

Google Scholar

[19] VDI 2218: Information technology in product development -Feature Technology, Beuth, Düsseldorf, (2003).

Google Scholar

[20] F. J. A. M. van Houten, PART: A Computer Aided Process Planning System, University of Twente, Enschde, (1991).

Google Scholar

[21] X. Xun, W. Lihui, S.T. Newman, Computer-Aided Process Planning – A Critical Review of Recent Developments and Future Trends, International Journal of Computer Integrated Manufacturing, 24/1, (2011), p.1–31.

DOI: 10.1080/0951192x.2010.518632

Google Scholar

[22] mecPro² – Modellbasierter Entwicklungsprozess cybertronischer Produkte und Produktionssysteme, Information on www. mecpro. de/static/kt1_en [20th March 2015].

DOI: 10.1007/978-3-662-55124-0_24

Google Scholar