Aggregation of Production Data for the Strategic Planning of Global Production Networks

Article Preview

Abstract:

In the last two decades a large amount of companies decided to establish productions sites all over the world in order to profit from cost benefits and to gain access to new markets and know-how. This internationalisation trend leads to more and more complex production networks. According to this development managers are confronted with growing intransparencies within their companies due to increasing information asymmetries, growing amount of interfaces and a growing effort for coordination. Nowadays a lot of strategic decisions, e.g. location decisions are made according to someone’s instinct. The usage of a valid data base within decision making processes can improve the quality of taken decisions. There are two ways to establish a sound data base: Manual data gathering, which is always associated with great effort or the usage of “big data”. Technologies from the era “Industrie 4.0” enable companies to gather and store a large amount of data. This data amount can establish transparency to support an objective assessment. Therefore the aim of this paper is the development of a method to aggregate production data systematically to support the strategic planning of global production networks.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

461-469

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] The Boston Consulting Group. A. Bhattacharya, T. Bradtke, J. Hemerling, J. Lebreton, X. Mosquet, I. Rupf, H.L. Sirkin, D. Young, Capturing Global Advantage (2004), p.6.

Google Scholar

[2] C. Zanker, S. Kinkel, S. Maloca, Globale Produktion von einer starken Heimatbasis aus - Ver-lagerungsaktivitäten deutscher Unternehmen auf dem Tiefstand, ISI Fraunhofer Institut, 2013, p.3.

Google Scholar

[3] F. Reichert et al., MAE-P3 – A system to gain transparency of production structure as a basis for production relocation planning, Systems Engineering, ISCENG, 2008, pp.458-463.

DOI: 10.1109/icseng.2008.55

Google Scholar

[4] T. Potente, R. M. Varandani, H. E. Timm, Optimierung von globalen Produktionsnetzwerken –Trust Data not Intuition!, Complexity Management Journal, 01/(2012).

Google Scholar

[5] G. Schuh, et al., Innovative Approaches for GPN, Robust Manufacturing Control - Proceedings of the CIRP Sponsored Conference RoMaC 2012, Springer Verlag, Heidelberg 2012, S. 385-397.

Google Scholar

[6] F. Eisenführ, et al., Rational Decision Making, Springer-Verlag Berlin Heidelberg, p.19.

Google Scholar

[7] C. Powalla, Heuristiken im Rahmen der strategischen Analyse – Ein Vergleich der Prognosekraft von VRIO-Framework und Rekognitionsheuristik, Berlin, 2009, p.2.

Google Scholar

[8] N. Yau, Visualize this!, Wiley-VCH, Weinheim, 2013, p.13.

Google Scholar

[9] G. Schuh, et al., Produktion am Standort Deutschland, Ergebnisse der Untersuchung (2013).

Google Scholar

[10] T. Meyer, Globale Produktionsnetzwerke. Ein Modell zur kostenoptimierten Standortwahl, Shaker-Verlag, Aachen, (2006).

Google Scholar

[11] T. Schmaußer, Gestaltung globaler Produktionsnetzwerke in der Automobilindustrie. Grundlagen, Modelle und Fallstudien, Cuvillier, Göttingen, (2011).

Google Scholar

[12] G. Lanza, J. Ude, Configuration of dynamic value added networks. In: Proceedings of the Institution of Mechanical Engineers, Part B, Volume 223, No. 5, 2009, pp.561-570.

DOI: 10.1243/09544054jem1368

Google Scholar

[13] E. Sabri, B. Beamon, A multi-objective approach to simultaneous strategic and operational planning in supply chain design. In: Omega – The International Journal of Management Science, No. 5, Volume 28, 2000, pp.581-598.

DOI: 10.1016/s0305-0483(99)00080-8

Google Scholar

[14] F. Jacob, Quantitative Optimierung dynam. Produktionsnetzwerke, Shaker-Verl., Aachen, (2006).

Google Scholar

[15] K. Kohler, Global Supply Chain Design, Konzeption u. Implementierung eines multikrit. Optimierungsmodells f. d. Gestaltung globaler Wertschöpfungsaktivitäten, CfSM, Estenfeld, (2008).

DOI: 10.1007/978-3-8349-8796-9_7

Google Scholar

[16] R. Moser, Strategische Planung globaler Produktionsnetzwerke: Bestimmung v. Wandlungsbedarf u. Wandlungszeitpunkt mittels multikriterieller Optimierung, Shaker-Verl., Karlsruhe, (2014).

Google Scholar

[17] G. Schuh, et al., An integrated approach for global production network optimisation, 22nd Conference on Computer-Aided Production Engineering (CAPE), Edinburgh, (2011).

Google Scholar

[18] J. A. Harding, et al., Data Mining in Manufacturing: A Review, in: Journal of Manufacturing Science and Engineering, Volume 128, 2006, pp.969-976.

Google Scholar

[19] J. H. Lee, S. C. Park, Agent and Data Mining Based Decision Support System and its Adaptation to a New Customer, 2003, Expert Systems with Applications, Volume 25, Issue 4, pp.619-635.

DOI: 10.1016/s0957-4174(03)00101-5

Google Scholar

[20] C. C. Huang, 2004, A Multi-Agent Approach to Collaborative Design of Modular Products, 2004, Concurrent Engineering: Research and Applications, Volume 12, pp.39-47.

DOI: 10.1177/1063293x04041944

Google Scholar

[21] Y. Ma et al., Distributed Clustering-Based Aggregation Algorithm for Spatial Correlated Sensor Networks, IEEE Sensors Journal, Vol. 11, No. 3, 2011, pp.641-648.

DOI: 10.1109/jsen.2010.2056916

Google Scholar

[22] K. Zhang et al., PHDA: A priority based health data aggregation with privacy preservation for cloud assisted WBANs, Information Science, Vol. 284, 2014, pp.130-141.

DOI: 10.1016/j.ins.2014.06.011

Google Scholar

[23] FORCAM, World Class Shop Floor Management, http: /www. forcam. de/fileadmin/pdf/-Produkte/Download/Broschuere_2014. pdf [downloaded on 26th of March, 2015].

Google Scholar