[1]
J. Arata, K. Ohmoto, R. Gassert, O. Lambercy, H. Fujimoto, and I. Wada, A new hand exoskeleton device for rehabilitation using a three-layered sliding spring mechanism, IEEE International Conference on Robotics and Automation, p.3902–3907, May (2013).
DOI: 10.1109/icra.2013.6631126
Google Scholar
[2]
P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn, A. Jansen-Troy, and S. Leonhardt, A survey on robotic devices for upper limb rehabilitation., Journal of neuroengineering and rehabilitation, vol. 11, p.1–29, (2014).
DOI: 10.1186/1743-0003-11-3
Google Scholar
[3]
L. Dovat, O. Lambercy, R. Gassert, T. Maeder, T. Milner, T. C. Leong, and E. Burdet, HandCARE: a cable-actuated rehabilitation system to train hand function after stroke., IEEE transactions on neural systems and rehabilitation engineering, vol. 16, no. 6, p.582–91, Dec. (2008).
DOI: 10.1109/tnsre.2008.2010347
Google Scholar
[4]
A. P. Mohd Nor Azmi, T. Komeda, and C. Y. Low, System Integration and Control of Finger Orthosis for Post Stroke Rehabilitation, Procedia Engineering, vol. 15, p.787–796, (2014).
DOI: 10.1016/j.protcy.2014.09.048
Google Scholar
[5]
N. Y. Lii, B. Pleintinger, C. H. Borst, G. Hirzinger, and A. Schiele, Toward understanding the effects of visual- and force-feedback on robotic hand grasping performance for space teleoperation, IEEE/RSJ International Conference on Intelligent Robots and Systems, p.3745–3752, Oct. (2010).
DOI: 10.1109/iros.2010.5650186
Google Scholar
[6]
A. P. Mohd Nor Azmi, T. Komeda, and J. Mahmud, Force Assisted Hand and Finger Device for Rehabilitation, International Symposium on Technology Management and Emerging Technologies (ISTMET), May 27 - 29, 2014, Bandung, Indonesia, p.133–138, (2014).
DOI: 10.1109/istmet.2014.6936493
Google Scholar
[7]
A. P. Mohd Nor Azmi, T. Komeda, T. Mori, T. Seki, Y. Saito, J. Mahmud, and C. Y. Low, Hand rehabilitation device system (HRDS) for therapeutic applications, 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, p.381–386, Aug. (2014).
DOI: 10.1109/biorob.2014.6913806
Google Scholar
[8]
K. I. Motoki Takagi Yoshiyuki Takahashi, Shin0-Ichiroh Yamamoto, Hiroyuki Koyama, Takashi Komeda, Development of A Grip Aid System using Air Cylinders, IEEE International Conference on Robotics & Automation, p.2312–2317, (2009).
DOI: 10.1109/robot.2009.5152246
Google Scholar
[9]
A. Kargov, C. Pylatiuk, J. Martin, S. Schulz, and L. Döderlein, A comparison of the grip force distribution in natural hands and in prosthetic hands., Disability and rehabilitation, vol. 26, no. 12, p.705–711, (2004).
DOI: 10.1080/09638280410001704278
Google Scholar
[10]
N. S. K. Ho, K. Y. Tong, X. L. Hu, K. L. Fung, X. J. Wei, W. Rong, and E. a. Susanto, An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: Task training system for stroke rehabilitation, IEEE International Conference on Rehabilitation Robotics, (2011).
DOI: 10.1109/icorr.2011.5975340
Google Scholar
[11]
Mohd Nor Azmi Ab Patar, T. Komeda, J. Mahmud, and C. Y. Low, Model Based Design of Finger Exoskeleton for Post Stroke Rehabilitation Using a Slotted Link Cam with Lead Screw Mechanism, Industrial Engineering, Management Science and Applications Lecture Notes in Electrical Engineering (Springer), vol. 349, p.95–103, (2015).
DOI: 10.1007/978-3-662-47200-2_11
Google Scholar