Object-Oriented Class Library for Resource Allocation Problems

Article Preview

Abstract:

The object-oriented class library designed for solving various optimization problems of resource allocation, including problems of cutting materials and any dimensional packing problems, is described in this paper. The class library enables obtaining of suboptimal solutions of NP-completed resource allocation problems using standard evolutionary and modified heuristic optimization algorithms. The developed class library can be used in creation of an applied software for a wide class of optimization problems, including problems of resource allocation in storage systems and logistics, problems of cutting materials on machine tools with numerical control, scheduling problems and a large set of other practical problems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1149-1153

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Wascher, H. Haubner and H. Schumann: An improved typology of cutting and packing problems. European Journal of Operational Research. Vol. 183: 3 (2007), pp.1109-1130.

DOI: 10.1016/j.ejor.2005.12.047

Google Scholar

[2] A. Bortfeldt, G. Wascher: Constraints in container loading – A state-of-the-art review. European Journal of Operational Research. Vol. 229: 1 (2013), pp.1-20.

DOI: 10.1016/j.ejor.2012.12.006

Google Scholar

[3] A. Lodi, S. Martello and M. Monaci: Two-dimensional packing problems: A survey. European journal of operational research. Vol. 141: 2 (2002), pp.241-252.

DOI: 10.1016/s0377-2217(02)00123-6

Google Scholar

[4] V.A. Chekanin, A.V. Chekanin: Development of the multimethod genetic algorithm for the strip packing problem. Applied Mechanics and Materials. Vol. 598 (2014), pp.377-381.

DOI: 10.4028/www.scientific.net/amm.598.377

Google Scholar

[5] M. Gary, D. Johnson: Computers Intractability: a Guide to the Theory of NP-completeness (W.H. Freeman, San Francisco 1979).

Google Scholar

[6] J.F. Goncalves, M.G.C. Resende: A biased random key genetic algorithm for 2D and 3D bin packing problems. International Journal of Production Economics. Vol. 145: 2 (2013), pp.500-510.

DOI: 10.1016/j.ijpe.2013.04.019

Google Scholar

[7] A.V. Chekanin, V.A. Chekanin: Efficient algorithms for orthogonal packing problems. Computational Mathematics and Mathematical Physics. Vol. 53: 10 (2013), pp.1457-1465.

DOI: 10.1134/s0965542513100047

Google Scholar

[8] S.C.H. Leung, D.F. Zhang, C.L. Zhou and T. Wu: A hybrid simulated annealing metaheuristic algorithm for the two-dimensional knapsack packing problem. Computers & Operations Research. Vol. 39: 1 (2012), pp.64-73.

DOI: 10.1016/j.cor.2010.10.022

Google Scholar

[9] A.V. Chekanin, V.A. Chekanin: Improved packing representation model for the orthogonal packing problem. Applied Mechanics and Materials. Vol. 390 (2013), pp.591-595.

DOI: 10.4028/www.scientific.net/amm.390.591

Google Scholar

[10] V.A. Chekanin, A.V. Chekanin: Multilevel linked data structure for the multidimensional orthogonal packing problem. Applied Mechanics and Materials. Vol. 598 (2014), pp.387-391.

DOI: 10.4028/www.scientific.net/amm.598.387

Google Scholar