[1]
Zhao, Y.; Song, D.; Qiang, Y.; Gu, X.; Zhu, L; Song, C. Dye-sensitized solar cells based on TiO2 hollow spheres/TiO2 nanotube array composite films. Applied Surface Science. 2014, 309, 85-89.
DOI: 10.1016/j.apsusc.2014.04.184
Google Scholar
[2]
Tartaj, P. Sub-100nm TiO2 mesocrystalline assemblies with mesopores: preparation, characterization, enzymeimmobilization and photocatalytic properties. Chemical Communications, 2011, 47, 256-258.
DOI: 10.1039/c0cc01540g
Google Scholar
[3]
Hagfeld ,A.; Gratzel, M. Chem. Rev. 1995, 95, 49-68.
Google Scholar
[4]
Hoffmann, M.; Martin, S.; Choi, W. Chem. Rev. 1995, 95, 69-96.
Google Scholar
[5]
Sopyan, I.; Watanabe, M.; Murasawa, S. Chem. Lett. 1996, 1, 69-70.
Google Scholar
[6]
Bach, U.; Lupo, D.; Comte, P. Nature, 1998, 395, 583-585.
Google Scholar
[7]
He, H.; Chen, A.; Lv, H. Fabrication of TiO2 film with different morphologies on Ni anode and application in photoassisted water electrolysis. Applied Surface Science. 2013, 266, 126-131.
DOI: 10.1016/j.apsusc.2012.11.115
Google Scholar
[8]
Kazuya,N.; Akira, F. TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2012, 13, 169-189.
DOI: 10.1016/j.jphotochemrev.2012.06.001
Google Scholar
[9]
Zhang, Z.; Chen, A.; Ma L. Fabrication of CNTs/TiO2 Porous Composite Film and Ph0tOcatalytic Performance. Chemical Journal of Chinese Universities. 2013, 34, 656-661.
Google Scholar
[10]
Choi, W.; Termin, A.; Hoffmann, M. The role of metal ion dopant in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem., 1994, 98, 13669-13679.
DOI: 10.1021/j100102a038
Google Scholar
[11]
Diwald, O.; Thompson, T.; Zubkov, T. Photochemical activity of nitrogem-doped rutile TiO2 (110) in visible light. J. Phys. Chem.B. 2004, 108, 6004-6008.
DOI: 10.1021/jp031267y
Google Scholar
[12]
Kang, S.; Kim, J.; Kim, Y.; Kim, H.; Sung, Y. Surface modification of stretched TiO2 nanotubes for solid-state dye-sensitized solar cells. The Journal of Physical Chemistry C. 2007, 111, 9614-9623.
DOI: 10.1021/jp071504n
Google Scholar
[13]
So, W.; Kim, K.; Moon, S. Photo-production of hydrogen over the CdS-TiO2 nanocomposite particulate films treated with TiCl4. International Journal of Hydrogen Energy. 2004, 29, 229-234.
DOI: 10.1016/s0360-3199(03)00211-8
Google Scholar
[14]
Qiu, J.; Yu, W.; Gao, X.; Li, X.; Sol-gel assisted ZnO nanorod array template to synthesize TiO2 nanotube arrays. Nanotechnology, 2006, 17, 4695-4698.
DOI: 10.1088/0957-4484/17/18/028
Google Scholar
[15]
Lee, S.; Jeon, C.; Park, Y. Fabrication of TiO2 Tubules by Template Synthesis and Hydrolysis with water Vapor. Chemistry of Materials. 2004, 16, 4292-4295.
DOI: 10.1021/cm049466x
Google Scholar
[16]
Zhuge, F.; Qiu, J.; Li, X.; Gao, X.; Gan, X.; Yu, W. Toward hierarchical TiO2 nanotube arrays for efficient dye-sensitized solar cells. Advanced materials. 2011, 23, 1330-1334.
DOI: 10.1002/adma.201003902
Google Scholar
[17]
Mor, G.; Shankar, K.; Paulose, M.; Varghese, O.; Grimes, C. Enhanced photocleavage of water using titania nanotube arrays. Nano Letters. 2005, 5, 191-195.
DOI: 10.1021/nl048301k
Google Scholar
[18]
Nozik, A. P-N photoelectrolysis cell. Applied Physics Letters. 1976, 29, 150-153.
Google Scholar
[19]
Shrestha, N.; Yang, M.; Nah, Y.; Paramasivam, I.; Schmuki, P. Self-organized TiO2 nanotubes: Visible light activation by Ni oxide nanoparticle decoration. Electrochemistry Communications. 2010, 12, 254-257.
DOI: 10.1016/j.elecom.2009.12.007
Google Scholar
[20]
Sreethawong, T.; Suzuki, Y.; Yoshikawa, S. Photocatalytic evolution of hydrogen over mesoporous TiO2 supported NiO photocatalyst prepared by single-step sol-gel process with surfactant template. International journal of hydrogen energy. 2005, 30, 1053-1062.
DOI: 10.1016/j.ijhydene.2004.09.007
Google Scholar
[21]
Wanichaya, M.; Russameeruk, N.; Wirat, J.; Wisanu, P. Quasi-Solid-State Dye-Sensitized Solar Cells Based on TiO2/NiO Core-Shell Nanocomposites. Journal of Nanoscience and Nanotechnology. 2011, 11, 6483-6489.
DOI: 10.1166/jnn.2011.4506
Google Scholar
[22]
Kosc,I.; Hotovy,I.; Roch,T.; Plecenik, T.; Gregor,M.; Predanocy,M.; Kus,P.; Plecenik, A. Double layer films based on TiO2 and NiOx for gas detection. Applied Surface Science. 2014, 312, 120-125.
DOI: 10.1016/j.apsusc.2014.05.193
Google Scholar
[23]
Ahmed, M. Synthesis and structural features of mesoporous NiO/TiO2 nanocomposites prepared by sol-gel method for photodegradation of methylene blue dye. Journal of Photochemistry and Photobiology A: Chemistry. 2012, 238, 63-70.
DOI: 10.1016/j.jphotochem.2012.04.010
Google Scholar
[24]
Wu, J.; Guo, R.; Huang, X.; Lin, Y. Construction of self-supported porous TiO2/NiO core/shell nanorod arrays for electrochemi calcapacitor application. Journal of Power Sources 2013, 243, 317-322.
DOI: 10.1016/j.jpowsour.2013.05.165
Google Scholar
[25]
Chen, S.; Zhang, S.; Liu, W.; Zhao, W. Preparation and activity evaluation of p-n junction photocatalyst NiO/TiO2. Journal of Hazardous Materials. 2008, 155, 320-326.
DOI: 10.1016/j.jhazmat.2007.11.063
Google Scholar
[26]
Chen, C.; Liao, C.; Hsu, K.; Wu, Y. P-N junction mechanism on improved NiO/TiO2 photocatalyst. Catalysis Communications. 2011, 12, 1307-1310.
DOI: 10.1016/j.catcom.2011.05.009
Google Scholar
[27]
Wu, J.; Guo, R.; Huang, X.; Lin, Y. Construction of self-supported porous TiO2/NiO core/shell nanorod arrays for electrochemi calcapacitor application. Journal of Power Sources. 2013, 243, 317-322.
DOI: 10.1016/j.jpowsour.2013.05.165
Google Scholar
[28]
Fu, w.; Qiu, J.; Li, X. Toward Hierarchical TiO2 Nanotube Arrays for Efficient Dye-Sensitized Solar Cells. Advanced materials. 2011, 23, 1330-1334.
DOI: 10.1002/adma.201003902
Google Scholar
[29]
Qiu, J.; Zhuge, F.; Lou, K.; Li, X.; Gao, X.; Gan, X.; Yu, W.; Kim, H. A facile route to aligned TiO2 nanotube arrays on transparent conducting oxide substrates for dye-sensitized solar cells. Journal of Materials Chemistry. 2011, 21, 5062-5068.
DOI: 10.1039/c0jm03689g
Google Scholar
[30]
Ohyama, M.; Kouzuka, H.; Yoko, T. Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution. Thin Solid Films. 1997, 306, 78-85.
DOI: 10.1016/s0040-6090(97)00231-9
Google Scholar
[31]
Kim, K.; Jong, W.; Hyun, O. Oxidation of Toluene on Bare and TiO2-Covered NiO-Ni(OH)2 Nanoparticles. The Journal of Physical Chemistry C, 2011, 115, 22954-22959.
DOI: 10.1021/jp2065997
Google Scholar
[32]
Zhao, B.; Ke, X.; Bao, J. Synthesis of Flower-Like NiO and Effects of Morphology on Its Catalytic Properties. J. Phys. Chem. C. 2009, 113, 14440-14447.
DOI: 10.1021/jp904186k
Google Scholar
[33]
Binni, V.; Reddy, M.; Zhu, Y. Fabrication of NiO Nanowall Electrodes for High PerformanceLithium Ion Battery. Chem. Mater. 2008, 20, 3360-3367.
Google Scholar
[34]
Dubey, P.; Sinha, A.; Talapatra, S.; Koratkar, N.; Srivas, O. Hydrogen generation by water electrolysis using carbon nanotube anode, International Journal of Hydrogen Energy. 2010, 35, 3945-3950.
DOI: 10.1016/j.ijhydene.2010.01.139
Google Scholar
[35]
He, H.; Chen, A.; Chang, M.; Ma, L.; Li, C. A feasible hydrogen evolution process of water electrolysis assisted by TiO2 nanotube photocatalysis. Journal of Industrial and Engineering Chemistry. 2013, 19, 1112-1116.
DOI: 10.1016/j.jiec.2012.12.006
Google Scholar
[36]
He, H.; Chen, A.; Lv, H.; Dong, H.; Chang, M.; Li, C. Hydrothermal fabrication of Ni3S2/TiO2 nanotube composite films on Ni anode and application in photoassisted water electrolysis. Journal of Alloys and Compounds. 2013, 574, 217-220.
DOI: 10.1016/j.jallcom.2013.04.208
Google Scholar
[37]
Patil, P.; Kadam, L. Preparation and characterization of spray pyrolyzed nickel oxide (NiO) thin films. Applied Surface Science. 2002, 199, 211-221.
DOI: 10.1016/s0169-4332(02)00839-5
Google Scholar
[38]
Ohta, H.; Kamiya, M.; Kamiya, T.; Hirano, M.; Hosono, H. UV-detector based on p-n heterojunction diode composed of transparent oxide semiconductors p-NiO/n-ZnO. Thin Solid Films. 2003, 445, 317-321.
DOI: 10.1016/s0040-6090(03)01178-7
Google Scholar
[39]
Mor, G.; Prakasam, H.; Varghese, O.; Shankar, K.; Grimes, C. Vertically oriented Ti-Fe-O nanotube array films: Toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Letters. 2007, 7, 2356-2364.
DOI: 10.1021/nl0710046
Google Scholar