Photoactive Anode of NiO/TiO2 Nanotube p-n Junctions and Application in Photoassisted Water Electrolysis

Article Preview

Abstract:

The photoactive anode was fabricated by hydrothermal method using the ZnO nanorod array as the template. NiO nanoflakes were assembled on the TiO2 tubular arrays to form p-n junction heterostrucutures on the Ni substrate. The water electrolysis was coupled with photocatalytic decomposition of water by irradiation of UV and UV-visible light on the modified Ni anode. Under UV and UV-visible light irradiation, the hydrogen evolution rates of the photoactive Ni anode modified by NiO/TiO2 nanotube composites are 2.92 ml/h·cm2 and 3.16 ml/h·cm2 respectively, increased by 5.4 % and 15 % in comparison with that of the Ni anode modified by TiO2 nanotube array and showed 152 % and 172 % improvement in comparison with that of sole Ni anode respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

158-165

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zhao, Y.; Song, D.; Qiang, Y.; Gu, X.; Zhu, L; Song, C. Dye-sensitized solar cells based on TiO2 hollow spheres/TiO2 nanotube array composite films. Applied Surface Science. 2014, 309, 85-89.

DOI: 10.1016/j.apsusc.2014.04.184

Google Scholar

[2] Tartaj, P. Sub-100nm TiO2 mesocrystalline assemblies with mesopores: preparation, characterization, enzymeimmobilization and photocatalytic properties. Chemical Communications, 2011, 47, 256-258.

DOI: 10.1039/c0cc01540g

Google Scholar

[3] Hagfeld ,A.; Gratzel, M. Chem. Rev. 1995, 95, 49-68.

Google Scholar

[4] Hoffmann, M.; Martin, S.; Choi, W. Chem. Rev. 1995, 95, 69-96.

Google Scholar

[5] Sopyan, I.; Watanabe, M.; Murasawa, S. Chem. Lett. 1996, 1, 69-70.

Google Scholar

[6] Bach, U.; Lupo, D.; Comte, P. Nature, 1998, 395, 583-585.

Google Scholar

[7] He, H.; Chen, A.; Lv, H. Fabrication of TiO2 film with different morphologies on Ni anode and application in photoassisted water electrolysis. Applied Surface Science. 2013, 266, 126-131.

DOI: 10.1016/j.apsusc.2012.11.115

Google Scholar

[8] Kazuya,N.; Akira, F. TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2012, 13, 169-189.

DOI: 10.1016/j.jphotochemrev.2012.06.001

Google Scholar

[9] Zhang, Z.; Chen, A.; Ma L. Fabrication of CNTs/TiO2 Porous Composite Film and Ph0tOcatalytic Performance. Chemical Journal of Chinese Universities. 2013, 34, 656-661.

Google Scholar

[10] Choi, W.; Termin, A.; Hoffmann, M. The role of metal ion dopant in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem., 1994, 98, 13669-13679.

DOI: 10.1021/j100102a038

Google Scholar

[11] Diwald, O.; Thompson, T.; Zubkov, T. Photochemical activity of nitrogem-doped rutile TiO2 (110) in visible light. J. Phys. Chem.B. 2004, 108, 6004-6008.

DOI: 10.1021/jp031267y

Google Scholar

[12] Kang, S.; Kim, J.; Kim, Y.; Kim, H.; Sung, Y. Surface modification of stretched TiO2 nanotubes for solid-state dye-sensitized solar cells. The Journal of Physical Chemistry C. 2007, 111, 9614-9623.

DOI: 10.1021/jp071504n

Google Scholar

[13] So, W.; Kim, K.; Moon, S. Photo-production of hydrogen over the CdS-TiO2 nanocomposite particulate films treated with TiCl4. International Journal of Hydrogen Energy. 2004, 29, 229-234.

DOI: 10.1016/s0360-3199(03)00211-8

Google Scholar

[14] Qiu, J.; Yu, W.; Gao, X.; Li, X.; Sol-gel assisted ZnO nanorod array template to synthesize TiO2 nanotube arrays. Nanotechnology, 2006, 17, 4695-4698.

DOI: 10.1088/0957-4484/17/18/028

Google Scholar

[15] Lee, S.; Jeon, C.; Park, Y. Fabrication of TiO2 Tubules by Template Synthesis and Hydrolysis with water Vapor. Chemistry of Materials. 2004, 16, 4292-4295.

DOI: 10.1021/cm049466x

Google Scholar

[16] Zhuge, F.; Qiu, J.; Li, X.; Gao, X.; Gan, X.; Yu, W. Toward hierarchical TiO2 nanotube arrays for efficient dye-sensitized solar cells. Advanced materials. 2011, 23, 1330-1334.

DOI: 10.1002/adma.201003902

Google Scholar

[17] Mor, G.; Shankar, K.; Paulose, M.; Varghese, O.; Grimes, C. Enhanced photocleavage of water using titania nanotube arrays. Nano Letters. 2005, 5, 191-195.

DOI: 10.1021/nl048301k

Google Scholar

[18] Nozik, A. P-N photoelectrolysis cell. Applied Physics Letters. 1976, 29, 150-153.

Google Scholar

[19] Shrestha, N.; Yang, M.; Nah, Y.; Paramasivam, I.; Schmuki, P. Self-organized TiO2 nanotubes: Visible light activation by Ni oxide nanoparticle decoration. Electrochemistry Communications. 2010, 12, 254-257.

DOI: 10.1016/j.elecom.2009.12.007

Google Scholar

[20] Sreethawong, T.; Suzuki, Y.; Yoshikawa, S. Photocatalytic evolution of hydrogen over mesoporous TiO2 supported NiO photocatalyst prepared by single-step sol-gel process with surfactant template. International journal of hydrogen energy. 2005, 30, 1053-1062.

DOI: 10.1016/j.ijhydene.2004.09.007

Google Scholar

[21] Wanichaya, M.; Russameeruk, N.; Wirat, J.; Wisanu, P. Quasi-Solid-State Dye-Sensitized Solar Cells Based on TiO2/NiO Core-Shell Nanocomposites. Journal of Nanoscience and Nanotechnology. 2011, 11, 6483-6489.

DOI: 10.1166/jnn.2011.4506

Google Scholar

[22] Kosc,I.; Hotovy,I.; Roch,T.; Plecenik, T.; Gregor,M.; Predanocy,M.; Kus,P.; Plecenik, A. Double layer films based on TiO2 and NiOx for gas detection. Applied Surface Science. 2014, 312, 120-125.

DOI: 10.1016/j.apsusc.2014.05.193

Google Scholar

[23] Ahmed, M. Synthesis and structural features of mesoporous NiO/TiO2 nanocomposites prepared by sol-gel method for photodegradation of methylene blue dye. Journal of Photochemistry and Photobiology A: Chemistry. 2012, 238, 63-70.

DOI: 10.1016/j.jphotochem.2012.04.010

Google Scholar

[24] Wu, J.; Guo, R.; Huang, X.; Lin, Y. Construction of self-supported porous TiO2/NiO core/shell nanorod arrays for electrochemi calcapacitor application. Journal of Power Sources 2013, 243, 317-322.

DOI: 10.1016/j.jpowsour.2013.05.165

Google Scholar

[25] Chen, S.; Zhang, S.; Liu, W.; Zhao, W. Preparation and activity evaluation of p-n junction photocatalyst NiO/TiO2. Journal of Hazardous Materials. 2008, 155, 320-326.

DOI: 10.1016/j.jhazmat.2007.11.063

Google Scholar

[26] Chen, C.; Liao, C.; Hsu, K.; Wu, Y. P-N junction mechanism on improved NiO/TiO2 photocatalyst. Catalysis Communications. 2011, 12, 1307-1310.

DOI: 10.1016/j.catcom.2011.05.009

Google Scholar

[27] Wu, J.; Guo, R.; Huang, X.; Lin, Y. Construction of self-supported porous TiO2/NiO core/shell nanorod arrays for electrochemi calcapacitor application. Journal of Power Sources. 2013, 243, 317-322.

DOI: 10.1016/j.jpowsour.2013.05.165

Google Scholar

[28] Fu, w.; Qiu, J.; Li, X. Toward Hierarchical TiO2 Nanotube Arrays for Efficient Dye-Sensitized Solar Cells. Advanced materials. 2011, 23, 1330-1334.

DOI: 10.1002/adma.201003902

Google Scholar

[29] Qiu, J.; Zhuge, F.; Lou, K.; Li, X.; Gao, X.; Gan, X.; Yu, W.; Kim, H. A facile route to aligned TiO2 nanotube arrays on transparent conducting oxide substrates for dye-sensitized solar cells. Journal of Materials Chemistry. 2011, 21, 5062-5068.

DOI: 10.1039/c0jm03689g

Google Scholar

[30] Ohyama, M.; Kouzuka, H.; Yoko, T. Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution. Thin Solid Films. 1997, 306, 78-85.

DOI: 10.1016/s0040-6090(97)00231-9

Google Scholar

[31] Kim, K.; Jong, W.; Hyun, O. Oxidation of Toluene on Bare and TiO2-Covered NiO-Ni(OH)2 Nanoparticles. The Journal of Physical Chemistry C, 2011, 115, 22954-22959.

DOI: 10.1021/jp2065997

Google Scholar

[32] Zhao, B.; Ke, X.; Bao, J. Synthesis of Flower-Like NiO and Effects of Morphology on Its Catalytic Properties. J. Phys. Chem. C. 2009, 113, 14440-14447.

DOI: 10.1021/jp904186k

Google Scholar

[33] Binni, V.; Reddy, M.; Zhu, Y. Fabrication of NiO Nanowall Electrodes for High PerformanceLithium Ion Battery. Chem. Mater. 2008, 20, 3360-3367.

Google Scholar

[34] Dubey, P.; Sinha, A.; Talapatra, S.; Koratkar, N.; Srivas, O. Hydrogen generation by water electrolysis using carbon nanotube anode, International Journal of Hydrogen Energy. 2010, 35, 3945-3950.

DOI: 10.1016/j.ijhydene.2010.01.139

Google Scholar

[35] He, H.; Chen, A.; Chang, M.; Ma, L.; Li, C. A feasible hydrogen evolution process of water electrolysis assisted by TiO2 nanotube photocatalysis. Journal of Industrial and Engineering Chemistry. 2013, 19, 1112-1116.

DOI: 10.1016/j.jiec.2012.12.006

Google Scholar

[36] He, H.; Chen, A.; Lv, H.; Dong, H.; Chang, M.; Li, C. Hydrothermal fabrication of Ni3S2/TiO2 nanotube composite films on Ni anode and application in photoassisted water electrolysis. Journal of Alloys and Compounds. 2013, 574, 217-220.

DOI: 10.1016/j.jallcom.2013.04.208

Google Scholar

[37] Patil, P.; Kadam, L. Preparation and characterization of spray pyrolyzed nickel oxide (NiO) thin films. Applied Surface Science. 2002, 199, 211-221.

DOI: 10.1016/s0169-4332(02)00839-5

Google Scholar

[38] Ohta, H.; Kamiya, M.; Kamiya, T.; Hirano, M.; Hosono, H. UV-detector based on p-n heterojunction diode composed of transparent oxide semiconductors p-NiO/n-ZnO. Thin Solid Films. 2003, 445, 317-321.

DOI: 10.1016/s0040-6090(03)01178-7

Google Scholar

[39] Mor, G.; Prakasam, H.; Varghese, O.; Shankar, K.; Grimes, C. Vertically oriented Ti-Fe-O nanotube array films: Toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Letters. 2007, 7, 2356-2364.

DOI: 10.1021/nl0710046

Google Scholar