First-Principles Study of Tuning the Band Gap with Cr Doped BN Sheets

Article Preview

Abstract:

It is all known that the BN sheet is a nonmagnetic wide-band-gap semiconductor. Using Density Function Theory (DFT), the lattice parameters of Cr doped BN sheets were optimized, which were still kept on 2D planar geometry, and the band gap was studied. The simulation results show that the band gap is very easy to be tuned by Cr doped BN sheet, which is more stable structure. So Cr doped BN sheet is a promising material in modulating the band gap and through tuning the band gap it can be a highly efficient photocatalytic material et al. Because Cr is poisonous and harmful substance, it does harm to people’s health and environmental pollution, particularly, heavy metal contamination in soil. So Cr doped BN sheet is a promising material in modulating the band gap, through tuning the band gap it can be a highly efficient photocatalytic material and benefit humanity and protect the environment et al.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

171-174

Citation:

Online since:

October 2015

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.L.C. Rowsell, A.R. millward, K.S. Park, O.M. yaghi, J. Am. chen. Soc. 126(2004)5666.

Google Scholar

[2] W. struzhkin, B. Millitzer, W.L. Mao, H.K. Mao, R.J. Hemley chem. Rev. 107(2007)438.

Google Scholar

[3] R. ströbel, J. Garche, P.T. Moseley, L. Jörissen,G. Wolf, J. Power Source 159(2006)781.

DOI: 10.1016/j.jpowsour.2006.03.047

Google Scholar

[4] P.O. Krasnov, F. Ding A.K. Singh, B.I. Yakobson, J. Phys. Chem. C111(2007)17977.

Google Scholar

[5] T. Sainsbury, A. Satti, P. May, Z. Wang, I. McGovern, Y.K. Gun'ko, J. Coleman J. Am. Chem. Soc., 134 (2012), p.18758.

Google Scholar

[6] T. Sainsbury, A. Satti, P. May, A. O'Neill, V. Nicolosi, Y.K. Gun'ko, J.N. Coleman Chem. Eur. J., 18 (2012), p.10808.

Google Scholar

[7] J. Zhou, Q. Wang, Q. Sun, P. Jena, Phys. Rev. B, 81 (2010), p.085442.

Google Scholar

[8] J. Li, G. Zhou, Y. Chen, B. -L. Gu, W. Duan, J. Am. Chem. Soc., 131 (2009), p.1796.

Google Scholar

[9] Y. Wang, Y. Ding, J. Ni, Phys. Rev. B, 81 (2010), p.193407.

Google Scholar

[10] M.S. Si, D.S. Xue, Phys. Rev. B, 75 (2007), p.193409.

Google Scholar

[11] M.S. Si, J.Y. Li, H.G. Shi, X.N. Niu, D.S. Xue, Europhys. Lett., 86 (2009), 46002.

Google Scholar

[12] S. Azevedo, J.R. Kaschny, C.M.C. de Castilho, F.A. de Brito Mota, Nanotechnology, 18 (2007), 495707.

DOI: 10.1088/0957-4484/18/49/495707

Google Scholar

[13] W. Chen, Y. Li, G. Yu, Z. Zhou, Z. Chen, J. Chem. Theory Comput., 5 (2009), p.3088.

Google Scholar

[14] M. Kan, J. Zhou, Q. Wang, Q. Sun, P. Jena, Phys. Rev. B, 84 (2011), p.205412.

Google Scholar

[15] Q. Tang, Z. Zhou, Z. Chen, J. Phys. Chem. C, 115 (2011), p.18531.

Google Scholar

[16] Q. Lin, X. Zou, G. Zhou, R. Liu, J. Wu, J. Li, W. Duan, Phys. Chem. Chem. Phys., 13 (2011), p.12225.

Google Scholar

[17] Z. Zhang, W. Guo, J. Phys. Chem. Lett., 2 (2011), p.2168.

Google Scholar

[18] S. Ashevlin and Z.X. Guo, Phys. Rev. B, 76, 024104(2007).

Google Scholar

[19] W.Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, Appl. Phys. Lett. 93(2008)223103.

Google Scholar

[20] Natarajan Sathiyamoorthy Venkataramanan, Mohammad Khazaei, Ryoji Sahara, Hiroshi Mizuseki and Yoshiyuki Kawazoe, Chem. Phys. 359 (1-3) (2009)173-178.

Google Scholar

[21] Z.M. Ao, Q. Jiang, R.Q. Zhang, T.T. Tan, and S. Li, J. Appl. Phys. 105(2009) 074307.

Google Scholar

[22] Z.M. Ao, S. Li and Q. Jiang, Phys. Chem. Chem. Phys., 2009, 11, 1683–1687.

Google Scholar

[23] Z.W. Zhang, J.C. Li, and Q. Jiang, J. Phys. Chem. C 2010, 114, 7733–7737.

Google Scholar

[24] M. Topsakal, E. Akt¨urk, and S. Ciraci, Phys. Rev. B 79, 115442(2009).

Google Scholar

[25] J. Zhou, Q. Wang, Q. Sun, and P. Jena, Phys. Rev. B 81, 085442(2010).

Google Scholar

[26] S. Azevedo, J. R. Kaschny, C.M. C. de Castilho, and F. de B. Mota, Eur. Phys. J. B 67, 507 (2009).

Google Scholar

[27] Y.G. Zhou, J. Xiao-Dong, Z.G. Wang, H.Y. Xiao, F. Gao, and X.T. Zu, Phys. Chem. Chem. Phys. 12, 7588 (2010).

Google Scholar

[28] S.L. Tang, Y.J. Liu, H.X. Wang, J.X. Zhao, Q.H. Cai, X.Z. Wang, Diamond and Related Materials, Volume 44, April 2014, Pages 54–61.

Google Scholar

[29] M. Kan, J. Zhou, Q. Wang, Q. Sun, and P. Jena, Phys. Rev. B 84, 205412 (2011).

Google Scholar

[30] S.Q. Ma, Advanced Materials Research Vols. 271-273 (2011).

Google Scholar

[31] D.Q. Xiong, H.J. Tian, B.L. Yang, H. Liu, Marine Environmental Science, Vol. 31, No. 4(2 0 1 2).

Google Scholar

[32] G.Y. Jiang, D.J. Cui, Journal of Agro-Environment Science, 25(supplementary issue), 76- 79(2006).

Google Scholar

[33] H. Yin, F. Wang, W. Liu, Agriculture & Technology, Vol. 30, No. 5(2010).

Google Scholar

[34] F.X. Luo, Westleather, Vol. 36 No. 04(2014).

Google Scholar

[35] Y.J. Wen, J. Sun, J.H. Gao, G.G. Zhang, Chinese Agricultural Science Bulletin, 29(14): 129-133(2013).

Google Scholar

[36] B. Delley, J. Chem. Phys. 92, 508(1990).

Google Scholar

[37] B. Delley, J. Chem. Phys. 113, 7756(2000).

Google Scholar

[38] DMol3 is available from Accelrys. Delley.

Google Scholar

[39] M.S. Si and D.S. Xue, Phys. Rev. B 75, 193409 (2007).

Google Scholar

[40] X.L. Li, X.J. Wu, Journal of University of Science and Technology of China, 44(5): 389-402(2014).

Google Scholar