Gas Sensitivity of Cr Doped BN Sheets

Article Preview

Abstract:

Using Density Function Theory (DFT), the lattice parameters of Cr doped BN sheets are optimized, which are still kept on 2D planar geometry, and the band gap and the gas sensitivity are studied. The simulation results show that the gas molecule is very easy to be absorbed by Cr doped N in BN sheet, which is more stable structure. At the same time the band gap is very easy to be tuned by adsorption the gases on the Cr doped BN sheet. The band gap decreases from 4.704eV to 0.053eV. Through adsorption energy, we find Cr substitution N on BN sheet has strong sensitivity to the gases such as N2, O2, CO, NO, CO2, NO2, H2S, CH2O etc. In a word, Cr doped BN sheet is a promising material in gas sensors and tuning the band gap et al.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

166-170

Citation:

Online since:

October 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.S. Xu, T. Liang, M.M. Shi, and H.Z. Chen. Chem. Rev. 2013, 113, 3766-3798.

Google Scholar

[2] S. Mao, S.M. Cui, G.H. Lu, K.H. Yu, Z.H. Wen and J.H. Chen, J. Mater. Chem., 2012, 22, 11009-11013.

Google Scholar

[3] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306(5696), 666-669(2004).

DOI: 10.1126/science.1102896

Google Scholar

[4] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Nature 438(7065), 197-200 (2005).

DOI: 10.1038/nature04233

Google Scholar

[5] Y.P. Dan, Y. Lu, N.J. Kybert, Z.T. Luo, and A.T.C. Johnson, Nano Lett., Vol. 9, No. 4, 1472-1475(2009).

Google Scholar

[6] A. Goldoni, R. Larciprete, L. Petaccia, and S. Lizzit, J. Am. Chem. Soc. 125, 11329 (2003).

DOI: 10.1021/ja034898e

Google Scholar

[7] B. Sanyal, O. Eriksson, U. Jansson, and H. Grennberg, Phys. Rev. B 79, 113409 (2009).

Google Scholar

[8] P. Shemella and S. K. Nayak, Appl. Phys. Lett. 94, 032101 (2009).

Google Scholar

[9] Y. Chen, B. Gao, J. X. Zhao, Q. H. Cai, H. G. Fu, J Mol Model 18, 2043-2054 (2012).

Google Scholar

[10] J.Y. Dai, J.M. Yuan, and P. Giannozzi, APPLIED PHYSICS LETTERS 95, 232105 (2009).

Google Scholar

[11] A. Kaniyoor, R.I. Jafri, T. Arockiadoss and S. Ramaprabhu, Nanoscale, 1, 382(2009).

Google Scholar

[12] S. Deng, V. Tjoa, H.M. Fan, H.R. Tan, D.C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei and C. H. Sow, J. Am. Chem. Soc., 2012, 134, 4905.

DOI: 10.1021/ja211683m

Google Scholar

[13] A. Gutes, B. Hsia, A. Sussman, W. Mickelson, A. Zettl, C. Carraro and R. Maboudian, Nanoscale, 2012, 4, 438.

DOI: 10.1039/c1nr11537e

Google Scholar

[14] M. Shafiei, P. G. Spizzirri, R. Arsat, J. Yu, J. du Plessis, S. Dubin, R. B. Kaner, K. Kalantar-Zadeh and W. Wlodarski, J. Phys. Chem. C, 2010, 114, 13796.

DOI: 10.1021/jp104459s

Google Scholar

[15] J. Yi, J. M. Lee and W. Il Park, Sens. Actuators, B, 2011, 155, 264.

Google Scholar

[16] Z. Zhang, R. Zou, G. Song, L. Yu, Z. Chen and J. Hu, J. Mater. Chem., 2011, 21, 17360.

Google Scholar

[17] L. Zhou, F. Shen, X. Tian, D. Wang, T. Zhang and W. Chen, Nanoscale, 2013, 5, 1564.

Google Scholar

[18] Yong-Hui Zhang, Li-Feng Han, Yuan-Hua Xiao, Dian-Zeng Jia, Zhan-Hu Guo, Feng Li, Computational Materials Science 69 (2013) 222-228.

Google Scholar

[19] Zuquan Wu, Xiangdong Chen, Shibu Zhu, Zuowan Zhou, Yao Yao, Wei Quan, Bin Liu, Sensors and Actuators B 178 (2013) 485-493.

Google Scholar

[20] You Xie, Yi-Ping Huo, Jian-Min Zhang , Applied Surface Science 258 (2012) 6391- 6397.

Google Scholar

[21] J.M. García-Lastra, D.J. Mowbray, K.S. Thygesen, A. Rubio, K.W. Jacobsen, Phys. Rev. B 81 (2010) 245429.

Google Scholar

[22] P.A. Denis, Chem. Phys. 353 (2008) 79-86.

Google Scholar

[23] C.S. Yeung, L.V. Liu, Y.A. Wang, J. Phys. Chem. C 112 (2008) 7401-7411.

Google Scholar

[24] J.X. Zhao, Y.H. Ding, Mater. Chem. Phys. 110 (2008) 411-416.

Google Scholar

[25] W. An, C.H. Turner, Chem. Phys. Lett. 482 (2009)274-280.

Google Scholar

[26] Shun Mao, Shumao Cui, Ganhua Lu, Kehan Yu, Zhenhai Wen and Junhong Chen, J. Mater. Chem., 2012, 22, 11009-11013.

Google Scholar

[27] Min Gyun Chung, Dai Hong Kim, Hyun Myoung Lee, Taewoo Kim, Jong Ho Choi, Dong kyun Seo, Ji-Beom Yoo, Seong-Hyeon Hong, Tae June Kang, Yong Hyup Kim, Sensors and Actuators B 166, 167 (2012) 172-176.

DOI: 10.1016/j.snb.2012.02.036

Google Scholar

[28] Deep Jariwala, Vinod K. Sangwan, Lincoln J. Lauhon, Tobin J. Marks and Mark C. Hersam , Chem. Soc. Rev., 2013, 42, 2824.

DOI: 10.1039/c2cs35335k

Google Scholar

[29] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Rev. Mod. Phys., Vol. 81, No. 1, January March (2009).

Google Scholar

[30] J.L.C. Rowsell, A.R. millward, K.S. Park, O.M. yaghi, J. Am. chen. Soc. 126(2004)5666.

Google Scholar

[31] W. struzhkin, B. Millitzer, W.L. Mao, H.K. Mao, R.J. Hemley chem. Rev. 107(2007)438.

Google Scholar

[32] R. ströbel, J. Garche, P.T. Moseley, L. Jörissen,G. Wolf, J. Power Source 159(2006)781.

DOI: 10.1016/j.jpowsour.2006.03.047

Google Scholar

[33] P.O. Krasnov, F. Ding A.K. Singh, B.I. Yakobson, J. Phys. Chem. C111(2007)17977.

Google Scholar

[34] S. Ashevlin and Z.X. Guo, Phys. Rev. B76, 024104(2007).

Google Scholar

[35] W.Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, Appl. Phys. Lett. 93(2008)223103.

Google Scholar

[36] X.L. Li, X.J. Wu, Journal of University of Science and Technology of China, 44(5): 389-402(2014).

Google Scholar

[37] M. Topsakal, E. Aktürk, and S. Ciraci, Phys. Rev. B 79, 115442(2009).

Google Scholar

[38] J. Zhou, Q. Wang, Q. Sun, et al. Phys. Rev. B 81, 085442(2010).

Google Scholar

[39] S. Azevedo, J. R. Kaschny, C.M. C. de Castilho, et al. Eur. Phys. J. B 67, 507 (2009).

Google Scholar

[40] Yu Tian, Xiao-fan Pan, Yue-jie Liu, Jing-xiang Zhao, Applied Surface Science 295 (2014) 137-143.

Google Scholar

[41] Jose Mario Galicia Hernández, Gregorio Hernández Cocoletzi, Ernesto Chigo Anota , J Mol Model 18: 137-144(2012).

Google Scholar

[42] E. Chigo Anota, H. Hern´andez Cocoletzi and E. Rubio Rosas , Eur. Phys. J. D 63, 271-273 (2011).

DOI: 10.1140/epjd/e2011-10608-4

Google Scholar

[43] Y.J. Liu, B. Gao, D. Xu, H.M. Wang, J.X. Zhao , PhysicsLettersA378(2014)2989-2994.

Google Scholar

[44] Ali Ahmadi Peyghan, Maziar Noei, Sirous Yourdkhani, Superlattices and Microstructures 59 (2013) 115-122.

DOI: 10.1016/j.spmi.2013.04.005

Google Scholar

[45] Delley B, J. Chem. Phys. 92, 508(1990).

Google Scholar

[46] Delley B, J. Chem. Phys. 113, 7756(2000).

Google Scholar

[47] DMol3 is available from Accelrys. Delley.

Google Scholar