Thermal Properties of Si Mechanically Alloyed with FeSi2 and CrSi2

Article Preview

Abstract:

Thermal properties of Si mechanically alloyed with FeSi2 and CrSi2 were characterized for the samples with different volume fraction of the disilicides. An anomalously low thermal conductivity observed in the FeSi2-doped samples was ascribed to an enhanced porosity of the samples which triggered the size effect on the lattice thermal conductivity reported previously for nanomeshed and “holey” silicon structures. It was also found that alloying of Si with FeSi2 led to a reduction of thermal conductivity as compared to the reference sample of pure Si prepared under the same conditions. On the other hand, alloying of Si with CrSi2 resulted in an increase in the thermal conductivity as compared to the reference sample of pure Si. The observed trends in the thermal conductivity were ascribed to the formation of impurity levels in the band gap.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

207-211

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Lan, A.J. Miunich, G. Chen and R. Ren: Adv. Funct. Mater. Vol. 20 (2010), p.357.

Google Scholar

[2] S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner and J. -P. Fleurial: Adv. Funct. Mater. Vol. 19 (2009), p.2445.

DOI: 10.1002/adfm.200900250

Google Scholar

[3] Y. Lee, S. Lee and G.S. Hwang: Phys. Rev. B Vol. 83 (2011), p.125202.

Google Scholar

[4] A. Paul and G. Klimeck: Appl. Phys. Lett. Vol. 98 (2011), p.083106.

Google Scholar

[5] Y. He, D. Donadio and G. Galli: Appl. Phys. Lett. Vol. 98 (2011), p.144101.

Google Scholar

[6] D.M. Rowe, V.S. Shukla and N. Savvides: Nature Vol. 290 (1981), p.765.

Google Scholar

[7] H.Q. Liu, Y. Song, S.N. Zhang, X.B. Zhao and F.P. Wang: J. Phys. Chem. Solids Vol. 70 (2009), p.600.

Google Scholar

[8] R. Yang and G. Chen: Phys. Rev. B Vol. 69 (2004), p.195316.

Google Scholar

[9] M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. -P. Fleurial and P. Gognaet: Adv. Mater. Vol. 19 (2007), p.1043.

Google Scholar

[10] A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar and P. Yang: Nature Vol. 451 (2008), p.163.

DOI: 10.1038/nature06381

Google Scholar

[11] A.A. Usenko, D.O. Moskovskikh, M.V. Gorshenkov, A.V. Korotitski, S.D. Kaloshkin, A.I. Voronin and V.V. Khovaylo: Scripta Mater. Vol. 96 (2015), p.9.

DOI: 10.1016/j.scriptamat.2014.10.001

Google Scholar

[12] G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen and Z. Ren: Nano Lett. Vol. 8 (2008), p.4670.

DOI: 10.1021/nl8026795

Google Scholar

[13] X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, and Z.F. Ren: Appl. Phys. Lett. Vol. 93 (2008), p.193121.

Google Scholar

[14] R.B. Song, T. Aizawa and J.Q. Sun: Mater. Sci. Eng. B Vol. 136 (2007), p.111.

Google Scholar

[15] J. -K. Yu, S. Mitrovic, D. Tham, J. Varghese and J.R. Heath: Nature Nanotech. Vol. 5 (2010), p.718.

Google Scholar