[1]
K. Nandakumar, M. Wiercigroch. Stability analysis of a state dependent delayed, coupled two DOF model of drill-string vibration. J. Sound and Vibration, vol. 332 (2013), pp.2575-2592.
DOI: 10.1016/j.jsv.2012.12.020
Google Scholar
[2]
Vaz, M.A., Patel, M.H. Analysis of drill strings in vertical and deviated holes using the Galerkin technique. Engineering Structures, vol. 17, No. 6 (1995), pp.437-442.
DOI: 10.1016/0141-0296(95)00098-r
Google Scholar
[3]
V.I. Gulyaev, V.V. Gaidaichuk, I.L. Solov'ev, and I.V. Gorbunovich. Quasistatic bifurcation states of super-deep vertical drill strings. J. Mining Science, vol. 46, No. 5 (2010), pp.546-553.
DOI: 10.1007/s10913-010-0068-8
Google Scholar
[4]
L.A. Khajiyeva. About vibrations and stability of boring rods of shallow drilling in view of geometrical nonlinearity, in: Proc. 11th Int. Conf. Vibration Problems, Lisbon, Portugal (2013).
Google Scholar
[5]
A.S. Volmir. Stability of Deforming Systems. Moscow: Nauka, 1967 (in Russian).
Google Scholar
[6]
F. Alijani, M. Amabili. Non-linear vibrations of shells: A literature review from 2003 to 2013. Int. J. Nonlinear Mechanics, vol. 58 (2014), pp.233-257.
DOI: 10.1016/j.ijnonlinmec.2013.09.012
Google Scholar
[7]
X. Zhu, L. Tang, and Q. Yang. A literature review of approaches for stick-slip vibration suppression in oilwell drillstring. Advances in Mechanical Engineering (2014).
DOI: 10.1155/2014/967952
Google Scholar
[8]
V.I. Gulyaev, P.Z. Lugovoi, and I.L. Solov'ev. Quasistatic and dynamic instability of one-support cylindrical shells under gyroscopic and nonconservative forces. Int. Applied Mechanics, vol. 46, No. 2 (2010), pp.175-181.
DOI: 10.1007/s10778-010-0295-3
Google Scholar
[9]
R.E. Kochurov, K.V. Avramov. Parametric vibration of cylindrical shells in the region of combination resonances under geometrically nonlinear deformation. J. Mathematical Sciences, vol. 174, No. 3 (2011).
DOI: 10.1007/s10958-011-0297-7
Google Scholar
[10]
A.S. Volmir. Shells in a liquid and gas flow. Problems of aeroelasticity. Moscow: Nauka, 1976 (in Russian).
Google Scholar
[11]
E.A. Kurilov, Yu.V. Mikhlin. Nonlinear vibrations of cylindrical shells with initial imperfections in a supersonic flow. Int. Appl. Mechanics, vol. 43, No. 9 (2007), pp.1000-1008.
DOI: 10.1007/s10778-007-0099-2
Google Scholar
[12]
E.L. Jansen. Analytical-numerical models for flutter of cylindrical shells in supersonic flow, in: Proc. 2nd MIT Conf. Computational Fluid and Solid Mechanics (2003), pp.1377-1380.
DOI: 10.1016/b978-008044046-0.50337-7
Google Scholar
[13]
M. Amabili, F. Pellicano. Nonlinear supersonic flutter of circular cylindrical shells. AIAA Journal, vol. 39, No. 4 (2001), pp.564-573.
DOI: 10.2514/3.14771
Google Scholar
[14]
K.N. Karagiozis, M.P. Paidoussis, M. Amabili, A.K. Misra. Nonlinear stability of cylindrical shells subjected to axial flow: Theory and experiments. J. Sound and Vibrations, vol. 309 (2008), pp.637-676.
DOI: 10.1016/j.jsv.2007.07.061
Google Scholar
[15]
A. Kudaibergenov, A. Kudaibergenov, L. Khajiyeva. Stability analysis of drill rods as shells in the gas stream. J. Applied Mechanics and Materials, vol. 665 (2014), pp.593-596.
DOI: 10.4028/www.scientific.net/amm.665.593
Google Scholar
[16]
E.I. Grigolyuk, V.V. Kabanov. Stability of shells. Moscow: Nauka, 1978 (in Russian).
Google Scholar
[17]
S.P. Timoshenko. Stability of strings, plates and shells. Moscow: Nauka, 1971 (in Russian).
Google Scholar