[1]
Netzel J P. Seal technology, a control for industrial pollution[J]. Lubr Eng, 1990, 46(8): 483-493.
Google Scholar
[2]
Buck G S, Volden D. Upstream pumping: a new concept in mechanical sealing technology[J]. Lubr Eng, 1990, 46(4): 213-217.
Google Scholar
[3]
Zhou J F, Gu B Q, Chen Ye. An improved design of spiral groove mechanical seal[J]. Chin J Chen Eng, 2007, 15(4): 499-506.
DOI: 10.1016/s1004-9541(07)60115-3
Google Scholar
[4]
Zhou Jianfeng, Gu Boqin. Characteristics of fluid film in optimized spiral groove mechanical seal[J]. Chinese J Mech Eng, 2007, 20(6): 54-61.
DOI: 10.3901/cjme.2007.06.054
Google Scholar
[5]
Cheng H S, Chow C Y, Wilcock D F. Behavior of hydrostatic and hydrodynamic noncontacting face seals[J]. ASME Jour Lubr Tech, 1968, 90(2): 510-519.
DOI: 10.1115/1.3601587
Google Scholar
[6]
Gabriel R P. Fundamentals of spiral groove noncontacting face seals[J]. Lubr Eng, 1979, 35(7): 367-375.
Google Scholar
[7]
Peng X D, Tan L L, Sheng S E, et al. Static analysis of a spiral-groove gas seal with an inner annular groove [J]. Tribology, 2008, 28(6): 507-511. (in Chinese).
Google Scholar
[8]
Zhang H J, Miller B A, Landers R G. Nonlinear modeling of mechanical gas face seal systems using proper orthogonal decomposition[J]. ASME J Tribol, 2006, 128(4): 817-827.
DOI: 10.1115/1.2345405
Google Scholar
[9]
Peng X D, Sheng S E, Yin X N, et al. Effects of surface roughness and slip flow on the performance of a spiral groove gas face seal[C]/ Proceedings of Micro Nano China, 2007: 21443 (6 pages).
DOI: 10.1115/mnc2007-21443
Google Scholar
[10]
Salant R F, Homiller S J. The effects of shallow groove patterns on mechanical seal leakage[J]. Trib Trans, 1992, 35(1): 142-148.
DOI: 10.1080/10402009208982101
Google Scholar
[11]
Malanoski S B, Pan C H T. The static and dynamic characteristics of the spiral-grooved thrust bearing[J]. ASME Jour Basic Eng, 1965, 87(3): 547-558.
DOI: 10.1115/1.3650605
Google Scholar
[12]
Muijderman E A. Spiral groove bearings[M]. New York: Philips Technical Library/ Springer-Verlag, (1966).
Google Scholar
[13]
Payvar P, Salant R F. A computational method for cavitation in wavy mechanical seal[J]. ASME J Tribol, 1992, 114: 199-204.
DOI: 10.1115/1.2920861
Google Scholar
[14]
Peng X D, Du D B, Li J Y. Effect of different section profile micro-pores on seal performance of a laser surface textured mechanical seal[J]. Tribology, 2006, 26(4): 367-371. (in Chinese).
Google Scholar
[15]
Li J H, Liu X F, Huang W F, et al. A finite element cavitation algorithm using free mesh for mechanical face seal[J]. Advanced Materials Research, 2011, (199-200): 670-677.
DOI: 10.4028/www.scientific.net/amr.199-200.670
Google Scholar
[16]
Folberg L, Jakobsson B. The finite journal bearing considering vaporization[J]. Chalmers Tekniska Hoegskolas Madlingar, 1957, 190: 1-116.
Google Scholar
[17]
Olsson K. Cavitation in dynamically loaded bearings[M]. Goteborg: Trans Chalmers Univ Thech, (1965).
Google Scholar
[18]
Elrod H G, Adams M L. A computer program for cavitation and starvation program[J]. Cavitation and Related Phenomena in Lubrication, Mechanical Engineering Publications for the Institute of Tribology, The University of Leeds, 1974, 33-41.
Google Scholar
[19]
Elrod H G. A cavitaiton algorithm[J]. ASME J Tribol, 1981, 103(3): 350-354.
Google Scholar
[20]
Ikeuchi K, Mori H. The effects of cavity fluctuation on the elastic and damping properties of journal bearings[J]. Trans Jpn Soc Mech Eng, Ser C, 1987, 53(485): 136-143.
Google Scholar
[21]
Pinkus O, Lund J W. Centrifugal effects in thrust bearings and seals under laminar conditions[J]. ASME J Tribol, 1981, 103: 126-136.
DOI: 10.1115/1.3251600
Google Scholar
[22]
Kogure K, Fukui S, Mitsuya Y, et al. Design of negative pressure slider for magnetic recording disks[J]. ASME Lubr Tech, 1983, 105: 496-502.
DOI: 10.1115/1.3254649
Google Scholar