Nanostructure Evolution of Expanded Graphite during High-Energy Ball-Milling

Article Preview

Abstract:

Expanded graphite (EG) was ball-milled in a high-energy planetary-type mill under an air atmosphere. The X-ray diffraction patterns of the products show that during the milling process (up to 100 h), the out-of-plane (Lc) and in-plane (La) crystallite sizes decrease gradually from 15.4 to 11.3 nm and 24.1 to 15.5 nm, respectively. The value of Lc/La, which is used to estimate the shape of the crystallites, increases gradually from 0.64 to 0.73. Compared with most of natural graphite, this Lc decrease degree of EG is far lower. This increased value of Lc/La indicates that the crystallites of the milled EG become thicker and steeper, which is contrary to the case for natural graphite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

229-232

Citation:

Online since:

July 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. A. Kim, T. Hayashi, Y. Fukai, M. Endo, T. Yanagisawa, M. S. Dresselhaus, Effect of ball milling on morphology of cup stacked carbon nanotubes, Chem. Phys. Lett. 355 (2002) 279–284.

DOI: 10.1016/s0009-2614(02)00248-8

Google Scholar

[2] T. Fukunaga, K. Nagano, U. Mizutani, H. Wakayama, Y. Fukushima, Structural change of graphite subjected to mechanical milling, J. Non-Cryst. Solids 232–234 (1998) 416–420.

DOI: 10.1016/s0022-3093(98)00495-5

Google Scholar

[3] T. D. Shen, W. Q. Ge, K.Y. Wang, M.X. Quan, J.T. Wang, W. D. Wei, et al, Structural disorder and phase transformation in graphite produced by ball-milling, Nanostruct. Mater. 7 (1996) 393–399.

DOI: 10.1016/0965-9773(96)00010-4

Google Scholar

[4] Y. Chen, J. F. Gerald, L.T. Chadderton, L. Chaffron, Nanoporous carbon produced by ball-milling, Appl. Phys. Lett. 74 (1999) 2782–2784.

DOI: 10.1063/1.124012

Google Scholar

[5] R. Janot, D. Guerard, Ball-milling: the behavior of graphite as a function of the dispersal media, Carbon 40 (2002) 2887–2896.

DOI: 10.1016/s0008-6223(02)00223-3

Google Scholar

[6] T.S. Ong, H. Yang, Effect of atmosphere on the mechanical milling of natural graphite, Carbon 38 (2000) 2077–(2085).

DOI: 10.1016/s0008-6223(00)00064-6

Google Scholar

[7] N. J. Welham, V. Berbenni, P. G. Chapman, Increased chemisorption onto activated carbon after ball-milling, Carbon (2002) 2307–2315.

DOI: 10.1016/s0008-6223(02)00123-9

Google Scholar

[8] A. Mileva, M. l Wilson, G.S. Kamali Kannangara, N. Tran, X-ray diffraction line profile analysis of nanocrystalline graphite, Mater. Chem. Phys. 111 (2008) 346–350.

DOI: 10.1016/j.matchemphys.2008.04.024

Google Scholar

[9] M. Inagaki, R. Tashiro, Y. Washino, M. Toyoda, Exfoliation process of graphite via intercalation compounds with sulfuric acid, J. Phys. Chem. Solids 65(2004) 133–137.

DOI: 10.1016/j.jpcs.2003.10.007

Google Scholar

[10] M. Francke, H. Hermann, R. Wenzel, G. Seifert, K. Wetzig, Modification of carbon nanostructures by high energy ball-milling under argon and hydrogen atmosphere, Carbon 43 (2005) 1204-1212.

DOI: 10.1016/j.carbon.2004.12.013

Google Scholar

[11] X.H. Chen, H.S. Yang, G.T. Wu, M. Wang, F.M. Deng, et al, Generation of curved or closed-shell carbon nanostructures by ball-milling of graphite, J. Cryst. Growth 218 (2000) 57–61.

DOI: 10.1016/s0022-0248(00)00486-3

Google Scholar

[12] Y.C. Fan , L.J. Wang , J.L. Li , J. Q. Li , S.K. Sun, F. Chen, L.D. Chen, W. Jiang, Preparation and electrical properties of grapheme nanosheet/Al2O3 composites, carbon 48 (2010)1743-1749.

DOI: 10.1016/j.carbon.2010.01.017

Google Scholar

[13] R.A. Reynolds III, R.A. Greinke, Influence of expansion volume of intercalated graphite on tensile properties of flexible graphite, Carbon 39 (2001) 473–481.

DOI: 10.1016/s0008-6223(00)00291-8

Google Scholar