Material Characteristics of Zinc Oxide Doped Aluminum for Microharvesting

Article Preview

Abstract:

Material characteristics of Zinc Oxide doped Al are investigated for microharvester. The microharvester include two parts, the first part is zigzag structures on silicon wafer using MEMS fabrication, and the second part is epitaxial ZnO with doping Al nanostructures on ITO glass using aqueous solution. The effects of the growth temperature, growth concentration, Al-doped for ZnO epitaxial growth, and AZO microharvesting are determined. Results show the percent transmittance decreases with increasing growth concentration ratio and the peak intensity of the (002) orientation increased with increasing growth temperature. The ZnO doped Al with zigzag structures have good efficiency of microharvesting due to its larger geometrical strain to area ratio.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

245-249

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Cao, L. Miao, S. Tanemura, M. Tanemura, Y. Kuno, Y. Hayashi and Y. Mori, J. J. Appl. Phys., 45 (2006), 1623-1628.

DOI: 10.1143/jjap.45.1623

Google Scholar

[2] L. W. Ji, S.J. Young, T. H. Fang, C. H. Liu, Appl. Phys. Lett. 90, 033109 (2007).

Google Scholar

[3] S. J. Young, L.W. Ji, T. H. Fang, S. J. Chang, Y. K. Su, X. L. Du, Acta Mater. 55, 329 (2007).

Google Scholar

[4] J. Cheng, X. Zhang, Z. Luo, Physica E 31, 235 (2006).

Google Scholar

[5] S. N. Cha, J. E. Jang, Y. Chio, G. A. J. Amaratunga, Appl. Phys. Lett. 89, 263102 (2006).

Google Scholar

[6] P. Kadam, C. Agashe, and S. J. Mahamuni, 104 (2008) J. Appl. Phys. 103501.

Google Scholar

[7] K. Y. Wu, C. C. Wang, and D. H. Chen, 18 (2007) Nanotechnology 305604.

Google Scholar

[8] X. Y. Xue, L. M. Li, H. C. Yu, Y. J. Chen, and Y. G. Yang, Appl. Phys. Lett. 89 (2006) 043118.

Google Scholar

[9] B. H. Kong, M. K. Choi, H. K. Cho, J. H. Kim, S. Baek, and J. H. Lee, Electrochem. Solid-State Lett., 13 (2010) K12-K14.

Google Scholar

[10] S. Mondal, K. P. Kanta, and P. Mitra, Journal of Physical Sciences, 12 (2008) 221-229.

Google Scholar

[11] W. Y. Chang, T. H. Fang, C. I Weng, and S. S. Yang, Applied Physics A, 102 (2010) 705-711.

Google Scholar

[12] K. Elen, H. V. den Rul, A. Hardy, M. K. V. Bael, J. DHaen, R. Peeters, D. Franco, and J. Mullens, Nanotechnology, 20 (2009) 055608.

DOI: 10.1088/0957-4484/20/5/055608

Google Scholar

[13] J. Kim, J. H. Yun, S. W. Jee, Y. C. Park, M. Ju, S. Han, Y. Kim, J. H. Kim, W. A. Anderson, J. H. Lee, J. Yi, Materials Letters, 65 (2011) 786–789.

DOI: 10.1016/j.matlet.2010.11.065

Google Scholar

[14] Z. Zhan, J. Zhang, Q. Zheng, D. Pan, J. Huang, F. Huang, and Z. Lin, Crystal Growth & Design, 11 (2011) 21-25.

Google Scholar

[15] S. Cho, S. H. Jung, J. W. Jang, E. Oh, and K. H. Lee, Crystal Growth & Design, 8 (2008) 4553-4558.

Google Scholar

[16] Y. T. Yin, W. X. Que, C. H. Kam, J. Sol-Gel Sci. Technol., 53 (2010) 605-612.

Google Scholar