Dielectric and Magnetoelectric Properties of Nano-Microscale Lead-Free Composite by 0.4Co-Ferrite and 0.6(K0.5Na0.5)NbO3-Based Ferroelectric Matrix

Article Preview

Abstract:

Lead-free multiferroic magnetoelectric composites were prepared by incorporating the dispersed 0.4CoFe2O4 ferromagnetic nanoparticles into 0.6(K0.5Na0.5)NbO3-LiSbO3 ferroelectric micromatrix. From the x-ray diffraction analysis, it was observed that almost no chemical reaction occurs between the ferrite and the ferroelectric materials used to form the composite. Dielectric properties as a function of frequency were measured. The magnetoelectric couple effect was given as a function of magnetic field with a maximum magnetoelectric voltage coefficient of 15.01mV·cm-1·Oe-1 at 1kHz, which was a very high value in the lead-free magnetoelectric composites system for the potential use on actuators and sensors, etc.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

271-275

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Nicola A. Hill, J. Phys. Chem. B 104 (2000) 6694–6709.

Google Scholar

[2] Ce-Wen Nan, N. Cai, Z. Shi, J. Zhai, G. Liu, and Y. Lin, Phys. Rev. B 71 (2005) 014102.

Google Scholar

[3] Tokura, Science 312 (2006) 1481.

Google Scholar

[4] A. Srinivas, R. Gopalan, V. Chandrasekharan,Solid State Communications 149 (2009) 367-370.

Google Scholar

[5] S. Y. Tan, S. R. Shannigrahi, S. H. Tan, and F. E. H. Tay, J. Appl. Phys. 103 (2008) 094105.

Google Scholar

[6] Ce-Wen Nan, J. Appl. Phys. 103 (2008) 031101.

Google Scholar

[7] J. Van Suchtelen, Philips Res. Rep. 27 (1972) 28–37.

Google Scholar

[8] G. Srinivasan, E. T. Rasmussen, and R. Hayes, Phys. Rev. B 67 (2003) 014418.

Google Scholar

[9] Hongxia Cao, Ning Zhang, JianjinWei, J. Alloys Compd. 472 (2009) 257–261.

Google Scholar

[10] S. Anteboth, A. Bruckner-Foit, M.J. Hoffmann U. Computational Materials Science 41 (2008) 420–429.

Google Scholar

[11] Shujun Zhang, Ru Xia, and Thomas R. Shrout, J. Appl. Phys. 100 (2006) 104108.

Google Scholar

[12] T. Takenaka and H. Nagata, J. Eur. Ceram. Soc. 25 (2005) 2693.

Google Scholar

[13] S.R. Kulkarni, C.M. Kanamadi, K.K. Patankar, B.K. Chougule, J. Mater. Sci. 40 (2005) 5691–5694.

Google Scholar

[14] Y.J. Li, X.M. Chen, Y.Q. Lin, Y.H. Tang. J. Eur. Ceram. Soc. 26 (2006) 2839–2844.

Google Scholar

[15] K.W. Wagner, Ann. Phys. 40 (1993) 818.

Google Scholar

[16] C.G. Koop, Phys. Rev. 83 (1951) 121.

Google Scholar

[17] Y.X. Liu, M. Zeng, Y. Wang, J.G. Wan, X.P. Jiang, J. -M. Liu, Ceramics International. 30 (2004) 1999–(2003).

Google Scholar