PLS Regression on Coal Infrared Spectrum with Wavelet Pre-Processing

Abstract:

Article Preview

Study on multivariate calibration for infrared spectrum of coal was presented. The discrete wavelet transformation as pre-processing tool was carried out to decompose the infrared spectrum and compress the data set. The compressed data regression model was applied to simultaneous multi-component determination for coal contents. Compression performance with several wavelet functions at different resolution scales was studied, and prediction ability of the compressed regression model was investigated. Numerical experiment results show that the wavelet transform performs an effective compression preprocessing technique in multivariate calibration and enhances the ability in characteristic extraction of coal infrared spectrum. Using the compressed data regression model, the reconstructing results are almost identical compared to the original spectrum, and the original size of the data set has been reduced to about 5% while the computational time needed decreases significantly.

Info:

Periodical:

Edited by:

Linli Xu, Wenya Tian and Elwin Mao

Pages:

279-283

DOI:

10.4028/www.scientific.net/AMM.80-81.279

Citation:

Y. M. Wang et al., "PLS Regression on Coal Infrared Spectrum with Wavelet Pre-Processing", Applied Mechanics and Materials, Vols. 80-81, pp. 279-283, 2011

Online since:

July 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.