Upper Limb Exoskeleton Controlled by Stepper Motor

Article Preview

Abstract:

The effectiveness of rehabilitation is closely linked with suitably chosen therapy. The treatment can be performed only by specialized personnel or through the use of automated devices. One of the potential solution of this problem is exoskeleton. It is the kind of suit that allows the user assumed to support or even replace the human motor. The paper presents a proposal of the exoskeleton with 1 degree of freedom providing upper extremity rehabilitation in the elbow with the master-slave program. Control is via stepper motor which ensures high accuracy in the implementation of programmed movements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

305-310

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Europejskie Ankietowe Badanie Zdrowia. (European Health Survey Respondents – in polish), (2009), GUS.

Google Scholar

[2] E. Mikołajewska, Egzoszkielety we współczesnych środowiskach zintegrowanych, (Exoskeletons in today's integrated environments – in polish). Zeszyty naukowe WSOWL, vol. 4 (2011) 246-253.

Google Scholar

[3] E. Mikołajewska, Zastosowania automatyki i robotyki w wózkach dla niepełnosprawnych i egzoszkieletach medycznych, (Automation and robotics applications in wheelchairs for the disabled and exoskeletons – in polish). Zeszyty Naukowe WSOWL, vol. 5 (2011).

DOI: 10.2478/rehab-2013-0002

Google Scholar

[4] E. Mikołajewska, Niepełnosprawność - zagadnienia, problemy, rozwiązania, (Disability - issues, problems and solutions – in polish). Państwowy Fundusz Rehabilitacji Osób Niepełnosprawnych, vol. 4 (2012) 121-141.

Google Scholar

[5] H. Lee, W. Kim, J. Han and C. Han, The technical trend of the exoskeleton robot system for human power assistance, International Journal of Precision Engineering and Manufacturing, vol. 13 (2012) 1491-1497.

DOI: 10.1007/s12541-012-0197-x

Google Scholar

[6] P. Ciężkowski, Analiza porównawcza systemów transportu typu – egzoszkielet, (Comparative analysis of the type of transport systems – exoskeleton). Zeszyty Naukowe Instytutu Pojazdów, vol. 95/4 (2013) 31-39.

Google Scholar

[7] Y. L. Hu, D. Liu and J. F. Liu, Analysis and Research on the Mechanics of Human Body Exoskeleton Movement, Applied Mechanics and Materials, vol. 687-691 (2014) 191-194.

DOI: 10.4028/www.scientific.net/amm.687-691.191

Google Scholar

[8] Y. Zhang, Q. Liu, J.L. Jiang, L. Y. Zhang and R. R. Shen, Configuration design and simulation of exoskeleton for upper limb rehabilitation train, Applied Mechanics and Materials, Trans Tech Publishing, Switzerland, vol. 701-702 (2014) 654.

DOI: 10.4028/www.scientific.net/amm.701-702.654

Google Scholar

[9] Y. Sahin, F. M. Botsalı, M. Kalyoncu, M. Tinkir, Ü. Önen, N. Yılmaz, Ö. K. Baykan and A. Çakan, Force feedback control of lower extremity exoskeleton assisting of load carrying human, Applied Mechanics and Materials, Trans Tech Publishing, Switzerland, vol. 598 (2014).

DOI: 10.4028/www.scientific.net/amm.598.546

Google Scholar

[10] Y. Sahin, F. M. Botsalı, M. Kalyoncu, M. Tinkir, Ü. Önen, N. Yılmaz and A. Çakan, Mechanical design of lower extremity exoskeleton assisting walking of load carrying human, Applied Mechanics and Materials, Trans Tech Publishing, Switzerland, vol. 598 (2014).

DOI: 10.4028/www.scientific.net/amm.598.141

Google Scholar

[11] J.L. Pons, Upper-limb robotic rehabilitation exoskeleton: tremor suppression, Rehabilitation Robotics. Retrieved 15. 12. 2014 http: /www. intechopen. com/ books/rehabilitation_robotics/ upperlimb_ robotic_rehabilitation_exoskeleton_tremor_suppression.

DOI: 10.5772/5175

Google Scholar

[12] Robaid. Retrieved 06. 26. 2015, http: /www. robaid. com/bionics/cyberdyne-hal-5-exoskeleton-robot. htm.

Google Scholar

[13] H. Kawamoto, Pilot study of locomotion improvement using hybrid assistive limb in chronic stroke patients BMC Neurology (2013). Retrieved 01. 05. 2015, from http: /www. biomedcentral. com / 1471-2377/13/131.

DOI: 10.1186/1471-2377-13-141

Google Scholar

[14] V. Krasin, V. Gandhi, Z. Yang and M. Karamanoglu, EMG based elbow joint powered exoskeleton for biceps brachii strength augmentation http: /www. ijcnn. org/assets/docs/frontmatter-v18. pdf.

DOI: 10.1109/ijcnn.2015.7280643

Google Scholar

[15] Toyama, S. Retrieved 04. 22. 2015, from Toyama Research: http: /www. tuat. ac. jp /~toyama/ research_assistancesuitE. htm.

Google Scholar

[16] D. Chakarov, I. Veneva, M. Tsveov and T. Tiankov, New exoskeleton arm concept design and actuation for haptic interaction with virtual objects. Journal of Theoretical and Applied Mechanics. vol. 44/4 (2014) 3–14.

DOI: 10.2478/jtam-2014-0019

Google Scholar

[17] T. Mikolajczyk, K. Bednarczyk and A. Mikolajczyk, Model of human hand controlled using pneumatic muscles, Applied Mechanics and Materials, Trans Tech Publishing, Switzerland, vol. 555 (2014) 155-162.

DOI: 10.4028/www.scientific.net/amm.555.155

Google Scholar

[18] Step2CNC. Retrieved 05. 01. 2015, www. akcesoria. cnc. info. pl/step2cnc. htm.

Google Scholar

[19] T. Mikolajczyk, A. Borboni, D. Mackowski and M. Matuszewski, Example of tool with two numerical controlled axes, Applied Mechanics and Materials, Trans Tech Publishing, Switzerland, vol. 772 (2015) 224-229.

DOI: 10.4028/www.scientific.net/amm.772.224

Google Scholar

[20] T. Mikolajczyk, D. Dorsz and L. Romanowski, Design and control system of parallel kinematics manipulator, Applied Mechanics and Materials, Trans Tech Publishing, Switzerland, vol. 436 (2013) 390-39.

DOI: 10.4028/www.scientific.net/amm.436.390

Google Scholar

[21] A. Olaru, S. Olaru and N. Mihai, Proper smart method of the inverse kinematics problem, Applied Mechanics and Materials, Trans Tech Publishing, Switzerland, vol. 772 (2015) 455-460.

DOI: 10.4028/www.scientific.net/amm.772.455

Google Scholar

[22] A. Olaru, S. Olaru and N. Mihai, Proper assisted research method solving of the robots inverse kinematic problem, Applied Mechanics and Materials, Trans Tech Publishing, Switzerland, vol. 555 (2014) 135-146.

DOI: 10.4028/www.scientific.net/amm.555.135

Google Scholar

[23] A. Olaru, S. Olaru and N. Mihai, Modeling and simulation of the multiple robot's applications, Applied Mechanics and Materials, Trans Tech Publishing, Switzerland, vol. 656 (2014) 223-232.

DOI: 10.4028/www.scientific.net/amm.656.223

Google Scholar