Investigation of Friction Using Non-Newtonian Lubricant Model in Hydrostatic Extrusion of Tungsten Alloy

Article Preview

Abstract:

Friction at die/billet interface is a complex phenomenon affected by various operating and process parameters in metal forming industries. In presence of lubricating layer at the interfacial contact friction effect is reduced and enhances tool life and surface quality of product. The lubricant viscosity is strongly dependent on pressure and temperature during deformation of hard material and an accurate prediction of lubricants viscosity leads to realistic results in the work zone. Therefore, the paper incorporates numerical simulation of friction at the die/billet interface in hydrostatic extrusion of tungsten alloy 93W for three different lubricants whose rheology is represented by a Non-Newtonian friction model. The billet heating effect is incorporated in the investigation and results show that the co-efficient of friction varies in a range (0.058 to 0.062) along the work zone for various lubricating conditions in hydrostatic extrusion process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

541-549

Citation:

Online since:

November 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Robertson, Method of an apparatus for forming metal articles, British Patent (1983) 19356.

Google Scholar

[2] P. W. Bridgman, Studies in large plastic flow and fracture, McGraw-Hill, New York, (1952).

Google Scholar

[3] H. L. D. Pugh, Redundant work and friction in the hydrostatic extrusion of pure aluminum and aluminum alloy, J. Mech. Eng. Sci. 6 (1964) 362-370.

Google Scholar

[4] W. Erans, B. Avitzur, Measurement of friction in drawing, extrusion and rolling, J. Lubr. Technol. 90 (1968) 72-80.

DOI: 10.1115/1.3601651

Google Scholar

[5] W. R. D. Wilson, J. A. Walowit, An isothermal hydrodynamic lubrication theory for hydrostatic extrusion and drawing processes with conical dies, J. Lubr. Technol. 92 (1971) 69-74.

DOI: 10.1115/1.3451538

Google Scholar

[6] W. R. D. Wilson, A comparison of the frictional losses in hydrostatic and conventional extrusion processes with hydrodynamic lubrication, J. Lubr. Technol. 93 (1971) 75-78.

DOI: 10.1115/1.3451539

Google Scholar

[7] R. W. Snidle, B. Parsons, D. Dowson, A thermal hydrodynamic lubrication theory for hydrostatic extrusion of low strength materials, J. Lubr. Technol. 98 (1976) 335-343.

DOI: 10.1115/1.3452845

Google Scholar

[8] T. C. Hsu, Y. M. Li, C. H. Hung, A mixed lubrication model for computer simulation of extrusion processes, Tribol. Trans. 43 (2000) 781-787.

DOI: 10.1080/10402000008982408

Google Scholar

[9] F. Wang, Z. Zhang, S. Li, Hydrodynamic analysis to process of hydrostatic extrusion for Tungsten alloy, J. Mat. Sci. Technol. 17 (2001) 180-182.

Google Scholar

[10] P. Ulysse, Extrusion die design for flow balance using FE and optimization methods, Int. J. Mech. Sci. 44 (2002) 319-341.

DOI: 10.1016/s0020-7403(01)00093-5

Google Scholar

[11] X. Ma, M. R. Barnett, Y. H. Kim, Forward extrusion through steadily rotating conical dies, Part I: experiments, Int. J. Mech. Sci. 46 (2004) 449-464.

DOI: 10.1016/j.ijmecsci.2004.03.017

Google Scholar

[12] H. Yang, Y. Peng, X. Ruan, M. Liu, A finite element model for hydrodynamic lubrication of cold extrusion with frictional boundary condition, J. Mater. Process. Technol. 161 (2005) 440-444.

DOI: 10.1016/j.jmatprotec.2004.07.080

Google Scholar

[13] S. Syahrullail, C. S. N. Azwadi, M. J. M. Ridzuan, W. B. Seah, The effect of lubricant viscosity in cold forward plane strain extrusion test, Euro. J. Sci. Res. 38 (2009) 545-555.

Google Scholar

[14] L. Wang, J. Zhou, J. Duszczyk, L. Katgerman, Friction in aluminium extrusion-Part 1, A review of friction testing techniques for aluminium extrusion, Tribol. Int. 56 (2012) 89-98.

DOI: 10.1016/j.triboint.2012.01.012

Google Scholar

[15] P. Tomar, R. K. Pandey, Y. Nath, Simulation of friction in hydrostatic extrusion process, J. Solid Mech. Mat. Eng. 7 (2013) 235-244.

Google Scholar

[16] P. Tomar, R. K. Pandey, Y. Nath, An accurate analysis for computation of minimum film thickness in inlet zone in hydrostatic extrusion processes, Tribol. Online. 8 (2013) 171-178.

DOI: 10.2474/trol.8.171

Google Scholar

[17] P. Tomar, R. K. Pandey, Y. Nath, Numerical modeling of frictional stress in the contact zone of direct extrusion of Aluminum alloys under starved lubrication, JOM. 65 (2013) 1426-1432.

DOI: 10.1007/s11837-013-0709-x

Google Scholar

[18] O. Hoffman, G. Sachs, Introduction to theory of plasticity for engineers, McGraw-Hill, New York, (1953).

Google Scholar

[19] C. R. Evans, K. L. Johnson, The rheological properties of elastohydrodynamic lubricants, Proc. IMechE, Part-C, J. Eng. Tribol. 200C (1986) 303-312.

Google Scholar

[20] H. R. Le, M. P. F. Sutcliffe, Measurement of friction in strip drawing under thin film lubrication, Tribol. Int. 35 (2002) 123-128.

DOI: 10.1016/s0301-679x(01)00104-9

Google Scholar