[1]
J. Robertson, Method of an apparatus for forming metal articles, British Patent (1983) 19356.
Google Scholar
[2]
P. W. Bridgman, Studies in large plastic flow and fracture, McGraw-Hill, New York, (1952).
Google Scholar
[3]
H. L. D. Pugh, Redundant work and friction in the hydrostatic extrusion of pure aluminum and aluminum alloy, J. Mech. Eng. Sci. 6 (1964) 362-370.
Google Scholar
[4]
W. Erans, B. Avitzur, Measurement of friction in drawing, extrusion and rolling, J. Lubr. Technol. 90 (1968) 72-80.
DOI: 10.1115/1.3601651
Google Scholar
[5]
W. R. D. Wilson, J. A. Walowit, An isothermal hydrodynamic lubrication theory for hydrostatic extrusion and drawing processes with conical dies, J. Lubr. Technol. 92 (1971) 69-74.
DOI: 10.1115/1.3451538
Google Scholar
[6]
W. R. D. Wilson, A comparison of the frictional losses in hydrostatic and conventional extrusion processes with hydrodynamic lubrication, J. Lubr. Technol. 93 (1971) 75-78.
DOI: 10.1115/1.3451539
Google Scholar
[7]
R. W. Snidle, B. Parsons, D. Dowson, A thermal hydrodynamic lubrication theory for hydrostatic extrusion of low strength materials, J. Lubr. Technol. 98 (1976) 335-343.
DOI: 10.1115/1.3452845
Google Scholar
[8]
T. C. Hsu, Y. M. Li, C. H. Hung, A mixed lubrication model for computer simulation of extrusion processes, Tribol. Trans. 43 (2000) 781-787.
DOI: 10.1080/10402000008982408
Google Scholar
[9]
F. Wang, Z. Zhang, S. Li, Hydrodynamic analysis to process of hydrostatic extrusion for Tungsten alloy, J. Mat. Sci. Technol. 17 (2001) 180-182.
Google Scholar
[10]
P. Ulysse, Extrusion die design for flow balance using FE and optimization methods, Int. J. Mech. Sci. 44 (2002) 319-341.
DOI: 10.1016/s0020-7403(01)00093-5
Google Scholar
[11]
X. Ma, M. R. Barnett, Y. H. Kim, Forward extrusion through steadily rotating conical dies, Part I: experiments, Int. J. Mech. Sci. 46 (2004) 449-464.
DOI: 10.1016/j.ijmecsci.2004.03.017
Google Scholar
[12]
H. Yang, Y. Peng, X. Ruan, M. Liu, A finite element model for hydrodynamic lubrication of cold extrusion with frictional boundary condition, J. Mater. Process. Technol. 161 (2005) 440-444.
DOI: 10.1016/j.jmatprotec.2004.07.080
Google Scholar
[13]
S. Syahrullail, C. S. N. Azwadi, M. J. M. Ridzuan, W. B. Seah, The effect of lubricant viscosity in cold forward plane strain extrusion test, Euro. J. Sci. Res. 38 (2009) 545-555.
Google Scholar
[14]
L. Wang, J. Zhou, J. Duszczyk, L. Katgerman, Friction in aluminium extrusion-Part 1, A review of friction testing techniques for aluminium extrusion, Tribol. Int. 56 (2012) 89-98.
DOI: 10.1016/j.triboint.2012.01.012
Google Scholar
[15]
P. Tomar, R. K. Pandey, Y. Nath, Simulation of friction in hydrostatic extrusion process, J. Solid Mech. Mat. Eng. 7 (2013) 235-244.
Google Scholar
[16]
P. Tomar, R. K. Pandey, Y. Nath, An accurate analysis for computation of minimum film thickness in inlet zone in hydrostatic extrusion processes, Tribol. Online. 8 (2013) 171-178.
DOI: 10.2474/trol.8.171
Google Scholar
[17]
P. Tomar, R. K. Pandey, Y. Nath, Numerical modeling of frictional stress in the contact zone of direct extrusion of Aluminum alloys under starved lubrication, JOM. 65 (2013) 1426-1432.
DOI: 10.1007/s11837-013-0709-x
Google Scholar
[18]
O. Hoffman, G. Sachs, Introduction to theory of plasticity for engineers, McGraw-Hill, New York, (1953).
Google Scholar
[19]
C. R. Evans, K. L. Johnson, The rheological properties of elastohydrodynamic lubricants, Proc. IMechE, Part-C, J. Eng. Tribol. 200C (1986) 303-312.
Google Scholar
[20]
H. R. Le, M. P. F. Sutcliffe, Measurement of friction in strip drawing under thin film lubrication, Tribol. Int. 35 (2002) 123-128.
DOI: 10.1016/s0301-679x(01)00104-9
Google Scholar