Physical and Mechanical Behaviors of SnCu-Based Lead-Free Solder Alloys with an Addition of Aluminium

Article Preview

Abstract:

The effect of Al addition on the microstructure, melting point and microhardness of SnCu-Al lead-free solder alloys were investigated with two different compositions of Al which were 1 wt% and 5 wt%. These solder alloys were fabricated through powder metallurgy (PM) method. The results showed that the melting point and the microhardness value of the SnCu-Al lead-free solder alloy were increased as the Al content increased from 1 wt% to 5 wt%. The grain growth of SnCu-Al lead-free solder alloy also tends to be retarded due to the homogenous distribution of Al at the grain boundaries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

64-68

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Mahmudi, and M. Eslami: Journal Materials Science: Material Electron, Vol. 22 (2011), pp.1168-1172.

Google Scholar

[2] A. Kantarcıoğlu, and Y. E. Kalay: Materials Science & Engineering, Vol. 593 (2014), pp.79-84.

Google Scholar

[3] M. Sadiq, J. S. Lecomte, and M. Cherkaoui: Chaotic Modeling and Simulation (CMSIM), Vol. 2 (2013), pp.335-348.

Google Scholar

[4] J. W. Evans, in: A Guide to Lead-free Solders: Physical Metallurgy and Reliability, 1st Edition, Springer-Verlag, London (2006).

Google Scholar

[5] M. A. A. M. Salleh, M. A. Abdullah, F. Somidin, A. V. Sandu, N. Saud, K. Hussin, S. D. McDonald, and K. Nogita: Revista de Chimie (Bucharest), Vol. 64 (2013), pp.725-727.

Google Scholar

[6] Y. F. Yan, J. H. Zhu, F. X. Chen, J. G. He, and D. X. Yang: Trans. Nonferrous Met. Soc. China, Vol. 16 (2006), pp.1116-1200.

Google Scholar

[7] M. A. A. M. Salleh, M.M.A. Abdullah, H. Kamarudin, M. Bnhussain, M.H. Zan, and S. Flora: Physics Procedia, Vol. 22 (2011), pp.299-304.

Google Scholar

[8] T. Siewert, S. Liu, D. R. Smith, and J. C. Madeni, in: Database for Solder Properties with Emphasis on New Lead-free Solders: Properties of lead-free solders, 4th Edition, Colorado School of Mines, U.S. A (2002).

DOI: 10.1109/ectc.2001.928000

Google Scholar

[9] J. M. Eric, in: Fundamentals of Materials Science: The Microstructure-Property Relationship Using Metals as Model Systems, 1st Edition, University of Stuttgart Heisenbergstr, Germany (2010).

Google Scholar

[10] A. A. El-Daly, F. El-Tantawyb, A. E. Hammada, M.S. Gaafar, E.H. El-Mossalamy, and A.A. Al-Gamdi, Journal of Alloys and Compounds, Vol. 509 (2011), p.7238–7246.

DOI: 10.1016/j.jallcom.2011.01.062

Google Scholar

[11] A.R. Nurul Razliana, A. Nisrin, N. Saud, and S.A. Musa: Advanced Materials Engineering and Technology III, Vol. 754-755 (2015), pp.166-170.

Google Scholar

[12] J.F. Guo, J. Liu, C.N. Sun, S. Maleksaeedi, G. Bi, M.J. Tan, and J. Wei: Materials Science & Engineering, Vol. 602 (2014), pp.143-149.

Google Scholar

[13] L.C. Tsao, S.Y. Chang, C.I. Lee, W.H. Sun, and C.H. Huang: Materials and Design, Vol. 31 (2010), pp.4831-4835.

Google Scholar

[14] K.J. Puttlitz and K. A Stalter: Handbook of Lead-Free Solder Technology for Microelectronic Assemblies (Marcel Dekker, Inc., New York 2004).

DOI: 10.1201/9780203021484

Google Scholar

[15] X.L. Zhong, and M. Gupta: Journal of Physics D : Applied Physics, Vol. 41 (2008), pp.1-7.

Google Scholar

[16] T. Fouzder, A.K. Gain, Y.C. Chan, A. Sharif, and W.K.C. Yung: Microelectronics Reliability, Vol. 50 (2010), p.2051-(2058).

Google Scholar

[17] A.K. Gain, Y.C. Chan, and W.K.C. Yung: Microelectronics Reliability, Vol. 51 (2011), pp.975-984.

Google Scholar