The Properties of Linear Low Density Polyethylene/Cyperus Odoratus (LLDPE/CY) Blends: Effect of Sodium Hydroxide

Article Preview

Abstract:

The purpose of this study was to determine the effect of treated Cyperus Odoratus (CY) with sodium hydroxide (NaOH) on the properties of biodegradable plastics made from linear low density polyethylene (LLDPE)/CY blends. Alkali treatments for natural fibers can increased adhesion between the hydrophilic fibers and hydrophobic matric. After CY was treated with 5% NaOH solution, it can be seen that the tensile strength and Young’s modulus of the LLDPE/CY blends significantly increased. Therefore, alkali treatments can be considered in modifying the properties of natural fibers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-73

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Kumar, S. Mohanty, S. K. Nayak, and M. Rahail Parvaiz, Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites, Bioresour. Technol., vol. 101, p.8406–8415, (2010).

DOI: 10.1016/j.biortech.2010.05.075

Google Scholar

[2] J. Rout, M. Misra, S. S. Tripathy, S. K. Nayak, and A. K. Mohanty, The influence of fibre treatment of the performance of coir-polyester composites, Compos. Sci. Technol., vol. 61, p.1303–1310, (2001).

DOI: 10.1016/s0266-3538(01)00021-5

Google Scholar

[3] Y. Kazemi, A. Cloutier, and D. Rodrigue, Mechanical and morphological properties of wood plastic composites based on municipal plastic waste, Polym. Compos., vol. 34, p.487–493, (2013).

DOI: 10.1002/pc.22442

Google Scholar

[4] A. K. Mohanty, M. A. Khan, and G. Hinrichsen, Surface modification of jute and its influence on performance of biodegradable jute-fabric/Biopol composites, Compos. Sci. Technol., vol. 60, no. 7, p.1115–1124, (2000).

DOI: 10.1016/s0266-3538(00)00012-9

Google Scholar

[5] Y. Cao, S. Shibata, and I. Fukumoto, Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments, Compos. Part A Appl. Sci. Manuf., vol. 37, p.423–429, (2006).

DOI: 10.1016/j.compositesa.2005.05.045

Google Scholar

[6] M. S. Sreekala, M. G. Kumaran, and S. Thomas, Oil palm fibers: Morphology, chemical composition, surface modification, and mechanical properties, J. Appl. Polym. Sci., vol. 66, p.821–835, (1997).

DOI: 10.1002/(sici)1097-4628(19971031)66:5<821::aid-app2>3.0.co;2-x

Google Scholar

[7] A. M. M. Edeerozey, H. M. Akil, A. B. Azhar, and M. I. Z. Ariffin, Chemical modification of kenaf fibers, Mater. Lett., vol. 61, p.2023–2025, (2007).

DOI: 10.1016/j.matlet.2006.08.006

Google Scholar

[8] D. González, V. Santos, and J. C. Parajó, Manufacture of fibrous reinforcements for biocomposites and hemicellulosic oligomers from bamboo, Chem. Eng. J., vol. 167, p.278–287, (2011).

DOI: 10.1016/j.cej.2010.12.066

Google Scholar

[9] P. J. Herrera-Franco and A. Valadez-González, A study of the mechanical properties of short natural-fiber reinforced composites, Composites Part B: Engineering, vol. 36. p.597–608, (2005).

DOI: 10.1016/j.compositesb.2005.04.001

Google Scholar

[10] M. F. Rosa, B. s. Chiou, E. S. Medeiros, D. F. Wood, T. G. Williams, L. H. C. Mattoso, W. J. Orts, and S. H. Imam, Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites, Bioresour. Technol., vol. 100, p.5196–5202, (2009).

DOI: 10.1016/j.biortech.2009.03.085

Google Scholar

[11] M. Tlijani, A, *, A., Gouadria, B, R. Benyounes, C, JF., Durastanti, D, and A. Mazioud, Study and Optimization of Palm Wood Mechanical Properties by Alkalization of the Natural Fiber, Int. J. Sci. Basic Appl. Res., (2013).

Google Scholar