Effect of Heat Treatment on Hardness Behavior of AZ91 and AZ91 Reinforced Carbon Nanotube

Article Preview

Abstract:

In the present work the effect of heat treatment on the hardness behavior of AZ91 and AZ91 reinforced carbon nanotube were investigated under FESEM, Xrd and Rockwell hardness tester. Cnt was embedded homogenously into the matrix due to successfully mechanical alloying using planetary milling. Kinetic precipitation of β-phase (Mg17Al12) also reveal in the X-ray diffraction pattern. Meanwhile, the artificial aged nanocomposite found decreased in hardness, compare to monolithic has higher value form early aged until 36 hours aging.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-83

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Goh, C. S., Wei, J., Lee, L. C., & Gupta, M. (2006). Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes. Materials Science and Engineering A, 423, 153–156. doi: 10. 1016/j. msea. 2005. 10. 071.

DOI: 10.1016/j.msea.2005.10.071

Google Scholar

[2] Hwang, S., Nishimura, C., & McCormick, P. G. (2001). Compressive mechanical properties of MgTi-C nanocomposite synthesised by mechanical milling. Scripta Materialia, 44, 2457–2462. doi: 10. 1016/S1359-6462(01)00925-3.

DOI: 10.1016/s1359-6462(01)00925-3

Google Scholar

[3] Jayakumar, J., Raghunath, B. K., & Rao, T. H. (2013). Enhancing microstructure and mechanical properties of AZ31-MWCNT nanocomposites through mechanical alloying. Advances in Materials Science and Engineering, 2013. doi: 10. 1155/2013/539027.

DOI: 10.1155/2013/539027

Google Scholar

[4] Shimizu, Y., Miki, S., Soga, T., Itoh, I., Todoroki, H., Hosono, T. Koide, a. (2008). Multi-walled carbon nanotube-reinforced magnesium alloy composites. Scripta Materialia, 58, 267–270. doi: 10. 1016/j. scriptamat. 2007. 10. 014.

DOI: 10.1016/j.scriptamat.2007.10.014

Google Scholar

[5] Li, C. D., Wang, X. J., Liu, W. Q., Wu, K., Shi, H. L., Ding, C., Zheng, M. Y. (2014).

Google Scholar

[6] Li, J. Y., Xie, J. X., Jin, J. B., & Wang, Z. X. (2012).

Google Scholar

[7] S. Iijima, (1991). Herical microtubules of graphitic carbon. Nature 354, 56 - 58; doi: 10. 1038/354056a0.

Google Scholar

[8] N. Saheb, A. Kahlil, A.S., Hakeem, T. Loaoi, N. Al-Aqeeli, A.M., Al-Qutub (2013). Age Behaviour of Carbon Nanotube Reinforced Aluminum Nanocomposites. Journal of Nano Research , 21, 29-35. doi: 10. 4028/www. sciencetific. net/JNanoR. 21. 29.

DOI: 10.4028/www.scientific.net/jnanor.21.29

Google Scholar

[9] Saheb, N., Qadir, N. U., Siddiqui, M. U., Fazl, A., Arif, M., Akhtar, S. S., & Al-aqeeli, N. (2014). Characterization of Nanoreinforcement Dispersion in Inorganic Nanocomposites: A Review, 4148–4181. doi: 10. 3390/ma7064148.

DOI: 10.3390/ma7064148

Google Scholar