Electrical Generation Using Renewable Technology for Remote Area: A Review

Article Preview

Abstract:

This paper is a review about process, progress and operation principle of renewable technology using water current as a clean, green and renewable energy to generate electricity for areas especially remote site that access to water but they are poor in electricity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

512-517

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Zomer, The challenge of rural electrification, Energy for Sustainable Development, 7 (2003) 69–76.

Google Scholar

[2] O. Paish, Small hydropower: technology and current status, J. Rene. Sust. Ener. Reviews, 6 (2011) 537–56.

Google Scholar

[3] G. G. Williams, P. Jain, Renewable energy strategies. J. Sustain, Envi. and Sus., 23 (2000) 29-42.

Google Scholar

[4] M.J. Khan, G. Bhuyan, M.T. Iqbal, Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications, J. Appl. Ener. 86 (2009) 1823-1835.

DOI: 10.1016/j.apenergy.2009.02.017

Google Scholar

[5] K. Sornes, Small-scale water current turbines for river applications, Zero Emission Resource Org. January (2010).

Google Scholar

[6] P. Duvoy, T.H.A. Hydrokal, Moduleforin-stream Hydro Kinetic Resource Assessment. Computer& Geosciences, 39 (2011) 171–81.

Google Scholar

[7] P.L. Fraenkel, Marine Current Turbines: an emerging technology. Scottish Hydraulics Study Group Seminar. March 19. Glasgow. (2004).

Google Scholar

[8] A.M. Gorlov, Harnessing Power from Ocean Current and Tides. Sea Technology. 45 (2004) 40-43.

Google Scholar

[9] S.F. Schubert, S.J. Turnovsky, The impact of oil prices on an oil-importing developing economy. J. Deve. Eco. 94 (2011) 18–29.

DOI: 10.1016/j.jdeveco.2009.12.003

Google Scholar

[10] A. Gomez-Loscos, A. Montanes, M.D. Gadea, The impact of oil shocks on the Spanish economy, J. En. Eco., 33 (2011) 1070–81.

Google Scholar

[11] H.J. Ali Ahmed, I.K.M.M. Wadud, Role of oil price shocks on macroeconomic activities: an SVAR approach to the Malaysian economy and monetary responses. J. Ene. Policy, 39 (2011) 8062–9.

DOI: 10.1016/j.enpol.2011.09.067

Google Scholar

[12] R. Zevenhoven,A. Beyene, The relative contribution of waste heat from power plants to global warming, J. Energy 36 (2011) 3754–62.

DOI: 10.1016/j.energy.2010.10.010

Google Scholar

[13] D. Harris, Monitoring global warming, J. En. and Envir. 22 (2011) 929–37.

Google Scholar

[14] G.P. Peters, B.T. Aamaas, M. Lund, C. Solli, J.S. Fuglestvedt , Alternative global warming metrics in life cycle assessment: a case study with existing transportation data, J. Envi. Sci. and Tech. 45 (2011) 8633–41.

DOI: 10.1021/es200627s

Google Scholar

[15] Analyses and Projections, U.S. Energy Information Administration, http: /www. eia. doe. gov/analysis/; (2011).

Google Scholar

[16] Department of Statistics, Malaysia. Electricity. Available at: /http: /www. statistics. gov. my/portal/download_Economics/download. php. (2012).

Google Scholar

[17] Department of Statistics, Malaysia. Mining, Manufacturing and electricity. Available at: /http: /www. statistics. gov. my/portal/download_Buletin_Bulanan/download. php?file=BPBM/2012/JAN/08_Mining. pdfS. (2012).

Google Scholar

[18] H.Y. Chong, W.H. Lam, Ocean renewable energy in Malaysia: The potential of the Straits of Malacca, (2013).

Google Scholar

[19] Ministry of Energy, Green Technology and Water, Malaysia. National Renewable Energy Policy & Action Plan. Kuala Lumpur: KeTTHA; (2009).

Google Scholar

[20] D. Gauntlett, P. Asmus, Executive summary: hydro kinetic and ocean energy, Pike Research, Clean tech. Market Intelligence. (2009).

Google Scholar

[21] C. Bear, B.D. Clare, New Energy Corporation Inc, (NECI), Suite 4733553 31 st Street NW, Calgary, Alberta, T2L 2K7; October (2008).

Google Scholar

[22] H. Tanbhir U.A. Nawshad, N. Islam, I. Sina, K. Syfullah, R. Raiyan , Micro hydro power: promising solution for off-grid renewable energy source, J. Scie. & Engin. Research 2 (2011).

Google Scholar

[23] G.G. Williams, P. Jain, Renewable energy strategies. Sustain, J. Envir. and Sust. 23 (2011) 29–42.

Google Scholar

[24] G. Vince, B. Clayton, Development and Application of a Water Current Turbine, (2010).

Google Scholar

[25] H. Zhou, Maximum power point tracking control of hydrokinetic turbine and Low-speed high-thrust permanent magnet generator design [MSc thesis]. Missouri University of Science and Technology; (2012).

Google Scholar

[26] S. Eriksson, H. Bernhoff, M. Leijon, Evaluation of different turbine concepts for wind power, Swedish Centre for Renewable Electric Energy Conversion, Division for Electricity and Lightning Research, (2006).

DOI: 10.1016/j.rser.2006.05.017

Google Scholar

[27] C. Hofemann, C. J. Simao Ferreira, G. J. V. Bussel, G. A. V. Kuik, F. Scarano, and K. R. Dixon, 3D Stereo PIV study of tip vortex evolution on a VAWT, (2008) 1–8.

DOI: 10.2514/6.2009-1219

Google Scholar

[28] D. T. S. Yogi, Savonius rotor vertical axis marine current turbine for Renewable energy application, (2010).

Google Scholar

[29] G. Colley and R. Mishra, Computational flow field analysis of a Vertical Axis Wind Turbine, in proceedings of the International Conference on Renewable Energies anPower Quality (2011).

DOI: 10.24084/repqj09.463

Google Scholar

[30] N. G. Alexander, M. G. Alexander, M. S. Valentin, Limits of the Turbine Efficiency for Free Fluid Flow, J. En. Reso. Tec. 123 (2001) 311-317.

Google Scholar

[31] H. J. Vermaak, K. Kusakanan, S.P. Koko, Status of micro-hydrokinetic river technology in rural applications, J. Rene. Sus. Ener. Reviews, 29 (2014) 625–633.

DOI: 10.1016/j.rser.2013.08.066

Google Scholar

[32] P. Garman, Water current turbines: Providing pumping, power in remote areas, Hydro Review Worldwide, 6(1998) 24–28.

Google Scholar

[33] A.F. Molland, A.S. Bahaj, J.R. Chaplin, W.M.J. Batten, Measurements and predictions of forces, pressures and cavitation on 2-d sections suitable for marine current turbines. (2004).

DOI: 10.1243/1475090041651412

Google Scholar

[34] Electricity from the ocean, www. marineturbines. com/ (accessed date 04. 04. 2010).

Google Scholar

[35] Y. Ohya, T. Karasudani, A. Sakurai, M. Inoue, Development of high-performance wind turbine system by wind-lens effect (locally concentrated wind energy). In: 23th Symposium for techniques utilizing wind energy, JSFM; 2001. p.76–9[in Japanese].

DOI: 10.1201/b16587-4

Google Scholar

[36] G. David Gaden, E. Bibeau, Increasing the power density of kinetic turbines for cost-effective distributed power generation. 2006, p.10–12, (2006).

Google Scholar

[37] K. Golecha, T.I. Eldho, S.V. Prabhu, Influence of the deflector plate on the performance of a modified Savonius water turbine, J. Appl. Ener. 88 (2011) 3207–17.

DOI: 10.1016/j.apenergy.2011.03.025

Google Scholar

[38] K. Golecha, T.I. Eldho, S.V. Prabhu, Investigation on the performance of a modified Savonius water turbine with single and two deflector plates, (2011).

DOI: 10.1016/j.apenergy.2011.03.025

Google Scholar

[39] R. L. Nicholls, utilizing inteligent materials in the design of tidal turbine blades. Fluid and structure interaction research group. Southampton, UK: University of Southampton; (2008).

Google Scholar

[40] J. Zanette, D. Imbault, A. Tourabi, A design methodology for cross flow water turbines, J. Renew. En. 35 (2010) 997–1009.

DOI: 10.1016/j.renene.2009.09.014

Google Scholar

[41] T. Asim, R. Mishra, K. Ubbi, K. Zala , Computational Fluid Dynamics Based Optimal Design of Vertical Axis Marine Current Turbines, (2013).

DOI: 10.1016/j.procir.2013.07.023

Google Scholar

[42] W.M.J. Batten, G.U. Batten, Potential for using the floating body structure to increase the efficiency of a free stream energy converter. 2011. p.2364–2371.

Google Scholar

[43] W.T. Chong, A. Fazlizan, S.C. Poh, K.C. Pan, H.W. Ping, Early development of an innovative building integrated wind, solar and rain water harvester for urban high rise application, J. En. Buil. 47 (2012) 201-207.

DOI: 10.1016/j.enbuild.2011.11.041

Google Scholar

[44] W. H. Lam, A. Bhatia, Folding tidal turbine as an innovative concept toward the new era of turbines, J. Renew. Sus. En. Reviews, 28 (2013) 463-473.

DOI: 10.1016/j.rser.2013.08.038

Google Scholar