[1]
A. Zomer, The challenge of rural electrification, Energy for Sustainable Development, 7 (2003) 69–76.
Google Scholar
[2]
O. Paish, Small hydropower: technology and current status, J. Rene. Sust. Ener. Reviews, 6 (2011) 537–56.
Google Scholar
[3]
G. G. Williams, P. Jain, Renewable energy strategies. J. Sustain, Envi. and Sus., 23 (2000) 29-42.
Google Scholar
[4]
M.J. Khan, G. Bhuyan, M.T. Iqbal, Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications, J. Appl. Ener. 86 (2009) 1823-1835.
DOI: 10.1016/j.apenergy.2009.02.017
Google Scholar
[5]
K. Sornes, Small-scale water current turbines for river applications, Zero Emission Resource Org. January (2010).
Google Scholar
[6]
P. Duvoy, T.H.A. Hydrokal, Moduleforin-stream Hydro Kinetic Resource Assessment. Computer& Geosciences, 39 (2011) 171–81.
Google Scholar
[7]
P.L. Fraenkel, Marine Current Turbines: an emerging technology. Scottish Hydraulics Study Group Seminar. March 19. Glasgow. (2004).
Google Scholar
[8]
A.M. Gorlov, Harnessing Power from Ocean Current and Tides. Sea Technology. 45 (2004) 40-43.
Google Scholar
[9]
S.F. Schubert, S.J. Turnovsky, The impact of oil prices on an oil-importing developing economy. J. Deve. Eco. 94 (2011) 18–29.
DOI: 10.1016/j.jdeveco.2009.12.003
Google Scholar
[10]
A. Gomez-Loscos, A. Montanes, M.D. Gadea, The impact of oil shocks on the Spanish economy, J. En. Eco., 33 (2011) 1070–81.
Google Scholar
[11]
H.J. Ali Ahmed, I.K.M.M. Wadud, Role of oil price shocks on macroeconomic activities: an SVAR approach to the Malaysian economy and monetary responses. J. Ene. Policy, 39 (2011) 8062–9.
DOI: 10.1016/j.enpol.2011.09.067
Google Scholar
[12]
R. Zevenhoven,A. Beyene, The relative contribution of waste heat from power plants to global warming, J. Energy 36 (2011) 3754–62.
DOI: 10.1016/j.energy.2010.10.010
Google Scholar
[13]
D. Harris, Monitoring global warming, J. En. and Envir. 22 (2011) 929–37.
Google Scholar
[14]
G.P. Peters, B.T. Aamaas, M. Lund, C. Solli, J.S. Fuglestvedt , Alternative global warming metrics in life cycle assessment: a case study with existing transportation data, J. Envi. Sci. and Tech. 45 (2011) 8633–41.
DOI: 10.1021/es200627s
Google Scholar
[15]
Analyses and Projections, U.S. Energy Information Administration, http: /www. eia. doe. gov/analysis/; (2011).
Google Scholar
[16]
Department of Statistics, Malaysia. Electricity. Available at: /http: /www. statistics. gov. my/portal/download_Economics/download. php. (2012).
Google Scholar
[17]
Department of Statistics, Malaysia. Mining, Manufacturing and electricity. Available at: /http: /www. statistics. gov. my/portal/download_Buletin_Bulanan/download. php?file=BPBM/2012/JAN/08_Mining. pdfS. (2012).
Google Scholar
[18]
H.Y. Chong, W.H. Lam, Ocean renewable energy in Malaysia: The potential of the Straits of Malacca, (2013).
Google Scholar
[19]
Ministry of Energy, Green Technology and Water, Malaysia. National Renewable Energy Policy & Action Plan. Kuala Lumpur: KeTTHA; (2009).
Google Scholar
[20]
D. Gauntlett, P. Asmus, Executive summary: hydro kinetic and ocean energy, Pike Research, Clean tech. Market Intelligence. (2009).
Google Scholar
[21]
C. Bear, B.D. Clare, New Energy Corporation Inc, (NECI), Suite 4733553 31 st Street NW, Calgary, Alberta, T2L 2K7; October (2008).
Google Scholar
[22]
H. Tanbhir U.A. Nawshad, N. Islam, I. Sina, K. Syfullah, R. Raiyan , Micro hydro power: promising solution for off-grid renewable energy source, J. Scie. & Engin. Research 2 (2011).
Google Scholar
[23]
G.G. Williams, P. Jain, Renewable energy strategies. Sustain, J. Envir. and Sust. 23 (2011) 29–42.
Google Scholar
[24]
G. Vince, B. Clayton, Development and Application of a Water Current Turbine, (2010).
Google Scholar
[25]
H. Zhou, Maximum power point tracking control of hydrokinetic turbine and Low-speed high-thrust permanent magnet generator design [MSc thesis]. Missouri University of Science and Technology; (2012).
Google Scholar
[26]
S. Eriksson, H. Bernhoff, M. Leijon, Evaluation of different turbine concepts for wind power, Swedish Centre for Renewable Electric Energy Conversion, Division for Electricity and Lightning Research, (2006).
DOI: 10.1016/j.rser.2006.05.017
Google Scholar
[27]
C. Hofemann, C. J. Simao Ferreira, G. J. V. Bussel, G. A. V. Kuik, F. Scarano, and K. R. Dixon, 3D Stereo PIV study of tip vortex evolution on a VAWT, (2008) 1–8.
DOI: 10.2514/6.2009-1219
Google Scholar
[28]
D. T. S. Yogi, Savonius rotor vertical axis marine current turbine for Renewable energy application, (2010).
Google Scholar
[29]
G. Colley and R. Mishra, Computational flow field analysis of a Vertical Axis Wind Turbine, in proceedings of the International Conference on Renewable Energies anPower Quality (2011).
DOI: 10.24084/repqj09.463
Google Scholar
[30]
N. G. Alexander, M. G. Alexander, M. S. Valentin, Limits of the Turbine Efficiency for Free Fluid Flow, J. En. Reso. Tec. 123 (2001) 311-317.
Google Scholar
[31]
H. J. Vermaak, K. Kusakanan, S.P. Koko, Status of micro-hydrokinetic river technology in rural applications, J. Rene. Sus. Ener. Reviews, 29 (2014) 625–633.
DOI: 10.1016/j.rser.2013.08.066
Google Scholar
[32]
P. Garman, Water current turbines: Providing pumping, power in remote areas, Hydro Review Worldwide, 6(1998) 24–28.
Google Scholar
[33]
A.F. Molland, A.S. Bahaj, J.R. Chaplin, W.M.J. Batten, Measurements and predictions of forces, pressures and cavitation on 2-d sections suitable for marine current turbines. (2004).
DOI: 10.1243/1475090041651412
Google Scholar
[34]
Electricity from the ocean, www. marineturbines. com/ (accessed date 04. 04. 2010).
Google Scholar
[35]
Y. Ohya, T. Karasudani, A. Sakurai, M. Inoue, Development of high-performance wind turbine system by wind-lens effect (locally concentrated wind energy). In: 23th Symposium for techniques utilizing wind energy, JSFM; 2001. p.76–9[in Japanese].
DOI: 10.1201/b16587-4
Google Scholar
[36]
G. David Gaden, E. Bibeau, Increasing the power density of kinetic turbines for cost-effective distributed power generation. 2006, p.10–12, (2006).
Google Scholar
[37]
K. Golecha, T.I. Eldho, S.V. Prabhu, Influence of the deflector plate on the performance of a modified Savonius water turbine, J. Appl. Ener. 88 (2011) 3207–17.
DOI: 10.1016/j.apenergy.2011.03.025
Google Scholar
[38]
K. Golecha, T.I. Eldho, S.V. Prabhu, Investigation on the performance of a modified Savonius water turbine with single and two deflector plates, (2011).
DOI: 10.1016/j.apenergy.2011.03.025
Google Scholar
[39]
R. L. Nicholls, utilizing inteligent materials in the design of tidal turbine blades. Fluid and structure interaction research group. Southampton, UK: University of Southampton; (2008).
Google Scholar
[40]
J. Zanette, D. Imbault, A. Tourabi, A design methodology for cross flow water turbines, J. Renew. En. 35 (2010) 997–1009.
DOI: 10.1016/j.renene.2009.09.014
Google Scholar
[41]
T. Asim, R. Mishra, K. Ubbi, K. Zala , Computational Fluid Dynamics Based Optimal Design of Vertical Axis Marine Current Turbines, (2013).
DOI: 10.1016/j.procir.2013.07.023
Google Scholar
[42]
W.M.J. Batten, G.U. Batten, Potential for using the floating body structure to increase the efficiency of a free stream energy converter. 2011. p.2364–2371.
Google Scholar
[43]
W.T. Chong, A. Fazlizan, S.C. Poh, K.C. Pan, H.W. Ping, Early development of an innovative building integrated wind, solar and rain water harvester for urban high rise application, J. En. Buil. 47 (2012) 201-207.
DOI: 10.1016/j.enbuild.2011.11.041
Google Scholar
[44]
W. H. Lam, A. Bhatia, Folding tidal turbine as an innovative concept toward the new era of turbines, J. Renew. Sus. En. Reviews, 28 (2013) 463-473.
DOI: 10.1016/j.rser.2013.08.038
Google Scholar