Filtering Techniques for Estimating the Angular Motion Using All-Accelerometers

Article Preview

Abstract:

Linear accelerometers can be used to retrieve the angular motion of the body they are attached to if their measurements are handled in an appropriate way. In this paper, an 18-accelerometer configuration is used to facilitate angular motion determination. Various measurement models are investigated where each model utilizes different accelerometers’ measurements. These models are used to build linear and nonlinear filters. The filters performances are evaluated and the associated sign ambiguity problem is solved. It is shown that a norm-constrained Kalman filters bank will give the best results. This work can be used within inertial navigation systems as a replacement of the gyroscopes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-109

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Tsung-Lin, Design and analysis of a fault-tolerant coplanar gyro-free inertial measurement unit, Journal of Microelectromechanical Systems 17. 1 (2008) 201-212.

DOI: 10.1109/jmems.2007.911372

Google Scholar

[2] L. Pei-Chun, et al, Design and implementation of a nine-axis inertial measurement unit, IEEE/ASME Transactions on Mechatronics 17. 4 (2012) 657-668.

DOI: 10.1109/tmech.2011.2111378

Google Scholar

[3] H. Chi-Wei, and Pei-Chun Lin, Design and implementation of a 12-axis accelerometer suite, IEEE/RSJ International Conference onIntelligent Robots and Systems (2009).

DOI: 10.1109/iros.2009.5353892

Google Scholar

[4] P. Kourosh, T. Lasky, and B. Ravani, Design and implementation of a mechatronic, all-accelerometer inertial measurement unit, IEEE/ASME Transactions on Mechatronics 12. 6 (2007) 640-650.

DOI: 10.1109/tmech.2007.910080

Google Scholar

[5] S. Alfred R., A. Grammatikos, and K. A. Fegley, Measuring rotational motion with linear accelerometers, IEEE transactions on aerospace and electronic systems 3. AES-3 (1967) 465-472.

DOI: 10.1109/taes.1967.5408811

Google Scholar

[6] A. F. Mohammad, and M. Elshafei, U.S. Patent 8, 260, 477. (2012).

Google Scholar

[7] Y. M. Al-Rawashdeh, M. Elshafei, and A. F. Mohammad, In-Flight Estimation of Center of Gravity Position Using All-Accelerometers, Sensors 14. 9 (2014) 17567-17585.

DOI: 10.3390/s140917567

Google Scholar

[8] S. Dan, Optimal state estimation: Kalman, H infinity, and nonlinear approaches, John Wiley & Sons, (2006).

Google Scholar

[9] Z. Renato, et al, Norm-constrained Kalman filtering, Journal of guidance, control, and dynamics 32. 5 (2009) 1458-1465.

Google Scholar

[10] H. Paul J., and R. H. Bishop, Navigation algorithms and observability analysis for formation flying missions, Journal of guidance, control, and dynamics 32. 4 (2009) 1218-1231.

DOI: 10.2514/1.41288

Google Scholar

[11] B. Vibhor L., et al, Stochastic observability test for discrete-time Kalman filters, Journal of Guidance, Control, and Dynamics 32. 4 (2009) 1356-1370.

DOI: 10.2514/1.38128

Google Scholar

[12] E. Ezzaldeen, S. Knedlik, and O. Loffeld, Constrained angular motion estimation in a gyro-free IMU, IEEE Transactions on Aerospace and Electronic Systems 47. 1 (2011) 596-610.

DOI: 10.1109/taes.2011.5705694

Google Scholar

[13] E. Ezzaldeen, S. Knedlik, and O. Loffeld, Angular Motion Estimation Using Dynamic Models in a Gyro-Free Inertial Measurement Unit, Sensors 12. 5 (2012) 5310-5327.

DOI: 10.3390/s120505310

Google Scholar

[14] W. Qingya, et al, Angular velocity estimation based on adaptive simplified spherical simplex unscented Kalman filter in GFSINS, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 228. 8 (2014).

DOI: 10.1177/0954410013492255

Google Scholar