Modified Sliding Mode Control for Mismatched Uncertain Systems with Unknown Disturbances

Article Preview

Abstract:

In this paper, a new sliding mode control law is developed for a class of mismatched uncertain systems with more general exogenous disturbances. First, we derive a new existence condition of linear sliding surface in terms of strict linear matrix inequalities such that the reduce-order sliding mode dynamics is is asymptotically stable. Second, we propose an adaptive sliding mode control law such that the system states reach the sliding surface in finite time and stay on its thereafter. Final, a numerical example is used to demonstrate the efficacy of the proposed method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-127

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.H. Choi, A new method for variable-structure control-system design –A linear matrix inequality approach, Automatica, vol. 33, no. 11, pp.2089-2092, (1997).

DOI: 10.1016/s0005-1098(97)00118-0

Google Scholar

[2] H.H. Choi, An explicit formula of linear sliding surfaces for a class of uncertain dynamic systems with mismatched uncertainties, Automatica, vol. 34, no. 8, pp.1015-1020, (1998).

DOI: 10.1016/s0005-1098(98)00042-9

Google Scholar

[3] K.K. Shyu, Y.W. Tsai, C.K. Lai, A dynamic output feedback controllers for mismatched uncertain variable structure systems, Automatica, vol. 37, no. 5, p.775–779, (2001).

DOI: 10.1016/s0005-1098(01)00014-0

Google Scholar

[4] H.H. Choi, LMI-based sliding surface design for integral sliding mode control of mismatched uncertain systems, IEEE Transactions on Automatic Control, vol. 52, no. 4, pp.736-742, (2007).

DOI: 10.1109/tac.2007.894543

Google Scholar

[5] F.J. Bejarano, L.M. Fridman, and A.S. Poznyak, Output integral sliding mode for min-max optimization of multi-plant linear uncertain systems, IEEE Transactions on Automatic Control, vol. 54, no. 11, pp.2611-2620, (2009).

DOI: 10.1109/tac.2009.2031718

Google Scholar

[6] M. Rubagotti, A. Estrada, F. Castanos and A. Ferrara, Integral sliding mode control for nonlinear systems with matched and unmatched perturbations, IEEE Transactions on Automatic Control, vol. 56, no. 11, pp.2699-2704, (2011).

DOI: 10.1109/tac.2011.2159420

Google Scholar

[7] Y. Gao, B. Sunand G. Lu, Passivity-based integral sliding-mode control of uncertain singularly perturbed systems, IEEE transactions on Circuits and Systems II: Express Briefs, vol. 58, no. 6, pp.386-390, (2011).

DOI: 10.1109/tcsii.2011.2149690

Google Scholar

[8] J. Yang, J. Su, S. Liand X. Yu, High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach, IEEE Transactions on Industrial Informatics, vol. 10 ,  no. 1, pp.604-614, (2013).

DOI: 10.1109/tii.2013.2279232

Google Scholar

[9] Q. Gao, G. Feng, L. Liu, J. Qiu and Y. Wang, Robust H∞ control for stochastic T-S fuzzy systems via integral sliding-mode approach, IEEE Transactions on Fuzzy Systems, vol. 22, no. 4, pp.870-881, (2013).

DOI: 10.1109/tfuzz.2013.2277732

Google Scholar

[10] D. Ginoya, P. D. Shendge, S. B. Phadke, Sliding mode control for mismatched uncertain systems using an extended disturbance observer, IEEE Transactions on Industrial Electronics, vol. 61, no. 4, pp.1983-1992, (2014).

DOI: 10.1109/tie.2013.2271597

Google Scholar

[11] H. Yang, Y. Xia, M. Fu and P. Shi, Robust adaptive sliding mode control for uncertain delta operator systems, International Journal of Adaptive Control and Signal Processing, vol. 24, no. 8, pp.623-632, (2010).

DOI: 10.1002/acs.1154

Google Scholar