[1]
S.H. Zak, and S. Hui, On variable structure output feedback controllers for uncertain dynamic systems, IEEE Transactions on Automation Control, 38(10): 1509-1512, (1993).
DOI: 10.1109/9.241564
Google Scholar
[2]
H.H. Choi, LMI-based sliding surface design for integral sliding mode control of mismatched uncertain systems, IEEE Transactions on Automatic Control, 52(4): 736-742, (2007).
DOI: 10.1109/tac.2007.894543
Google Scholar
[3]
H. -C. Chen, Optimal fuzzy pid controller design of an active magnetic bearing system based on adaptive genetic algorithms, in Proceedings of the International Conference on Machine Learning and Cybernetics, 4: 2054-2060, (2008).
DOI: 10.1109/icmlc.2008.4620744
Google Scholar
[4]
S-Y. Chen; F.J. Lin, Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system, IEEE Transactions on Control Systems Technology, 19(3): 636-643, (2011).
DOI: 10.1109/tcst.2010.2050484
Google Scholar
[5]
S. Xu ang D. Su, Research of magnetically suspended rotor control in control moment gyroscope based on fuzzy integral sliding mode method, International Conference on Electrical Machines and System, pp.1901-1906, (2013).
DOI: 10.1109/icems.2013.6713213
Google Scholar
[6]
F. -J Lin, S. -Y Chen and M. -S Huang, Intelligent double integral sliding-mode control for five-degree-of-freedom active magnetic bearing system, IET Control Theory & Applications, 5(11): 1287-1303, (2011).
DOI: 10.1049/iet-cta.2010.0237
Google Scholar
[7]
K.Y. Lum, V.T. Coppola, and D.S. Bernstein, Adaptive autocentering control for an . active magnetic bearing supporting a rotor with unknown mass imbalance, IEEE Transactions on Control Systems Technology, 4(5): 587-597, (1996).
DOI: 10.1109/87.531925
Google Scholar
[8]
S. Gangbing and R. Mukherjee, Integrated adaptive robust control of active magnetic bearings, IEEE conference on Systems Man and Cybernetics, 3: 1784-1790, (1996).
DOI: 10.1109/icsmc.1996.565378
Google Scholar
[9]
S. Sivrioglu, Adaptive backstepping for switching control active magnetic bearing system with vibrating base, IET Control Theory and Applications, 1(4): 1054 – 1059, (2007).
DOI: 10.1049/iet-cta:20050473
Google Scholar
[10]
A.M. Beizama, J.M. Echeverria, M.M. Iturraldel, I. Egaña and L. Fontan, Comparison between pole-placement control and sliding mode control for 3-pole radial magnetic bearings, International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp.1315-1320, (2008).
DOI: 10.1109/speedham.2008.4581115
Google Scholar
[11]
S. L Chen and C. T. Hsu, Exact linearization of a voltage-controlled 3-pole active magnetic bearing system, IEEE Transactions on Control Systems Technology, 10(4): 618 -625, (2002).
DOI: 10.1109/tcst.2002.1014681
Google Scholar
[12]
S.L. Chen and C. Chang, Nonlinear smooth control of 3-pole active magnetic bearing system, IEEE Transactions on Control Systems Technology, 12(6): 62-65, (2011).
Google Scholar
[13]
S.L. Chen and C. T Hsu, Optimal design of a three - pole active magnetic bearing, IEEE Transactions on Magnetics, 38(5): 3458-3466, (2002).
DOI: 10.1109/tmag.2002.802709
Google Scholar
[14]
M.J. Jang, C.L. Chen and Y. M. Tsao, Sliding mode control of active magnetic bearing system with flexible rotor, Journal of the Franklin Institute, 342(4): 401-419, (2005).
DOI: 10.1016/j.jfranklin.2005.01.006
Google Scholar
[15]
V.A.S. Jesna, S. Ushakumari, Stabilization of three pole active magnetic bearing by sliding mode control techniques, International Conference on Green Technologies, 147-154, (2012).
DOI: 10.1109/icgt.2012.6477963
Google Scholar
[16]
S.M. Darbandi, M. Behzad, H. Salarieh, and H. Mehdigholi, Linear output feedback control of a three-pole magnetic bearing, IEEE/ASME Transactions on Mechatronics, 19(4): 1323-1330, (2014).
DOI: 10.1109/tmech.2013.2280594
Google Scholar