Failure Modeling of Hybrid Transition Structures

Article Preview

Abstract:

Metal structures and components made of fiber reinforced plastics are often tied using bolts, rivets or adhesive bonding methods. To avoid the disadvantages of these techniques, hybrid transition structures can be used. Two different concepts are investigated and a numerical approach to calculate the failure properties of such transition structures is proposed. This is done using cohesive zone models for a wire concept and probability functions in an extended failure tree analysis for a foil concept. Numerical results based on the finite element method are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

44-53

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Schimanski, K., Lang, A., Bitykov, V., von Hehl, A., Schumacher, J., Jablonski, F., Herrmann, A.S.: Analysis of integral transition structures for FRP-aluminium compounds. Proc. of 60th Deutscher Luft- und Raumfahrtkongress (DLRK), 27. 09. 2011 in Bremen.

Google Scholar

[2] Schiebel, P., Lang, A., Herrmann, A.S., Schimanski, K., von Hehl, A., Bomas, H., Zoch, H. -W.: Bauweisen für CFK-Aluminium-Übergangsstrukturen im Leichtbau. Proc. of 18. Symposium Verbundwerkstoffe und Werkstoffverbunde, 2011, p.393.

Google Scholar

[3] Bitykov, V., Jablonski, F., Kienzler, R.: Versagensverhalten verschiedener Metall-Faser- Übergangsverbindungen. DVM-Bericht 244, 44. Tagung des DVM-Arbeitskreises Bruchvor- gänge, Darmstadt, 2012, p.131.

Google Scholar

[4] Bitykov, V., Jablonski, F., Kienzler, R.: Modeling of Fracture Behavior of Hybrid Transition Structures, Procedia Materials Science, Volume 2, 2013, p.243.

DOI: 10.1016/j.mspro.2013.02.030

Google Scholar

[5] Lang, A.; Brauner, C.; Bitykov, V.; Jablonski, F.: Thermomechanisches Verhalten von hybriden CFK-Aluminium Übergangsstrukturen, Proc. of 19. Symposium Verbundwerkstoffe und Werkstoffverbunde, (2013).

Google Scholar

[6] Alfano, G., Crisfield, M. A.: Finite element interface models for the delamination analysis of laminated composites: mechanical und computational issues. International Journal for Numerical Methods in Engineering 50(7), 2001, p.1701.

DOI: 10.1002/nme.93

Google Scholar

[7] Naghipour, P., Schulze, K., Hausmann, J., Bartsch, M.: Numerical and experimental investigation on lap shear fracture of Al/CFRP laminates. Composites Science and Technology, Volume 72, Issue 14, 2012, p.1718.

DOI: 10.1016/j.compscitech.2012.07.012

Google Scholar

[8] Elices, M., Guinea, G.V., Gómez, J., Planas, J., 2002. The cohesive zone model: advantages, limitations and challenges. Engineering Fracture Mechanics 69, p.137.

DOI: 10.1016/s0013-7944(01)00083-2

Google Scholar

[9] Panigrahi, S. K.; Pradhan, B.: Three Dimensional Failure Analysis and Damage Propagation Behavior of Adhesively Bonded Single Lap Joints in Laminated FRP Composites. Journal of Reinforced Plastics and Composites , Vol. 26, No. 2/(2007).

DOI: 10.1177/0731684407070026

Google Scholar

[10] Habenicht, G.: Kleben - Grundlagen, Technologien, Anwendungen. 6. Issue, Springer, Berlin, (2009).

Google Scholar

[11] Zhu, Y., Kedward, K.: Methods of Analysis and Failure Predictions for Adhesively Bonded Joints of Uniform and Variable Bondline Thickness. Final Report, May 2005. U.S. Department of Transportation, DOT/FAA/AR-05/12.

Google Scholar

[12] Yue, C. Y., Cheung, W. L.: Interfacial properties of fibrous composites. Journal of Materials Science, 27: 3173–3180, 1992. doi: 10. 1007/BF01116007.

Google Scholar

[13] Beckert, W., Lauke, B.: Critical discussion of the single-fibre pull-out test: does it measure adhesion? Composites Science und Technology, 57(12), 1998, p.1689.

DOI: 10.1016/s0266-3538(97)00107-3

Google Scholar

[14] Kharrat, M., Dammak, M., Charafil, A.: Mechanical characterisation of interface for steel/polymer composite using pull-out test: Shear-lag und frictional analysis. Journal of Materials Science & Technology, 22, 2006, p.552.

Google Scholar

[15] Fiedler , B., Hojo, M., Ochiai, S., Schulte, K., Ando, M.: Failure behavior of an epoxy matrix under different kinds of static loading. Composites Science and Technology 61, 2001, p.1615.

DOI: 10.1016/s0266-3538(01)00057-4

Google Scholar

[16] Bertsche, B., Lechner, G.: Zuverlässigkeit im Fahrzeug und Maschinenbau – Ermittlung von Bauteil und System-Zuverlässigkeiten. 3. Edition. Springer, Berlin, (2001).

DOI: 10.1007/978-3-662-65024-0_13

Google Scholar

[17] Meyna, A.: Zuverlässigkeitsbewertung zukunftsorientierter Technologien. Vieweg, Wiesbaden, (1994).

DOI: 10.1007/978-3-322-93973-9

Google Scholar

[18] Niemann, G.: Maschinenelemente, Band I., 3. Aufl. Springer, Berlin, (2001).

Google Scholar