Modification Behavior and Microstructure Evolution during Solution Heat Treatment of A356 Alloys with Al2Ca and Excess Mg

Article Preview

Abstract:

Si modification behavior by twin probability approach with X-ray diffractometry (XRD) technique and microstructural evolution of the A356 alloys with Al2Ca and Mg exceeded up to 1.5 mass% during the solution heat treatment were investigated. Al2Ca added alloys showed the modified Si particles in the microstructure and higher twin density than those of Al2Ca-free alloy. During the solution heat treatment, the Si particles of Al2Ca-free alloy became coarser with the time at 540 °C, while there was no coarsening in the Al2Ca added alloys throughout all the conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

179-184

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Schneider, F.J. Feikus, Heat treatment of aluminium casting alloys for vacuum die casting, Light Metal Age (1998) 22-38.

Google Scholar

[2] D.R. Gunasegarama, M. Givord, R.G. O'Donnell, B.R. Finnin, Improvements engineered in UTS and elongation of aluminum alloy high pressure die castings through the alteration of runner geometry and plunger velocity, Mater. Sci. & Eng. A 559 (2013).

DOI: 10.1016/j.msea.2012.08.098

Google Scholar

[3] E.J. Vinarcik, High integrity die casting processes, Jon Wiley & Sons Inc., New York, (2003).

Google Scholar

[4] S. Gowri, F.H. Samuel, Effect of Alloying Elements on the Solidification Characteristics and Microstmcture of Al-Si-Cu-Mg-Fe 380 Alloy, Metall. Mater. Trans. A 25 (1994) 437-448.

DOI: 10.1007/bf02647989

Google Scholar

[5] C.H. Caceres, C.J. Davidson, J.R. Griffiths and Q.C. Wang, The effect of Mg on the microstructure and mechanical behavior of Al-Si-Mg casting alloys, Metall. Mater. Trans. A 30 (1999) 2611-2618.

DOI: 10.1007/s11661-999-0301-8

Google Scholar

[6] C.H. Caceres, I.L. Svensson, J.A. Taylor, Strength-ductility behaviour of Al-Si-Cu-Mg casting alloys in T6 temper, Int. J. Cast Metals Res. 15 (2003) 531-543.

DOI: 10.1080/13640461.2003.11819539

Google Scholar

[7] J.Y. Hwang, R. Banerjee, H.W. Doty, M.J. Kaufman, The effect of Mg on the structure and properties of type 319 aluminum casting alloys, Acta Mater. 57 (2009) 1308-1317.

DOI: 10.1016/j.actamat.2008.11.021

Google Scholar

[8] M.S. Salleh, M.Z. Omar, J. Syarif, The effects of Mg addition on the microstructure and mechanical properties of thixoformed Al-5%Si-Cu alloys, J. Alloys Compd. 621 (2015) 121-130.

DOI: 10.1016/j.jallcom.2014.09.152

Google Scholar

[9] H. Yang, S. Ji, W. Yang, Y. Wang, Z. Fan, Effect of Mg level on the microstructure and mechanical properties of die-cast Al-Si-Cu alloys, Mater. Sci. & Eng. A 642 (2015) 340-350.

DOI: 10.1016/j.msea.2015.07.008

Google Scholar

[10] J. Gilbert Kaufman, Elwin L. Rooy, ASM International Materials Park, OH 44073-0002.

Google Scholar

[11] D.B. Lee, High temperature oxidation of AZ31+0. 3 wt. % Ca and AZ31+0. 3 wt. % CaO magnesium alloys, Corros. Sci. 70 (2013) 243-251.

DOI: 10.1016/j.corsci.2013.01.036

Google Scholar

[12] J.W. Jeong, J.S. Im, K. Song, M. h. Kwon, S.K. Kim, Y.B. Kang, S. H. Oh, Transmission electron microscopy and thermodynamic studies of CaO-added AZ31 Mg alloys, Acta Mater. 61 (2013) 3267-3277.

DOI: 10.1016/j.actamat.2013.02.015

Google Scholar

[13] T.W. Lee, H.G. Kim, M.G. So, J.K. Lee, S.K. Kim, W.J. Park, W.Y. Kim, S.S. Kim, S.H. Lim, Microstructural evaluation of oxide layers in CaO-added Mg alloys, J. Alloys Compd. 635 (2015) 5-10.

DOI: 10.1016/j.jallcom.2015.02.101

Google Scholar

[14] Y.O. Yoon, S.H. Ha, G.Y. Yeom, H.K. Lim, S.K. Kim, OXIDATION BEHAVIOR OF Al2Ca ADDED Al-5Mg ALLOY IN THE LIQUID STATE, in: Barry Sadler (Ed. ), Light Metals 2013, TMS Annual Meeting, San Antonio, 2013, pp.323-326.

DOI: 10.1002/9781118663189.ch56

Google Scholar

[15] S.J. Kim, S.K. Hyun, S.K. Kim and Y.O. Yoon, Effect of Al2Ca on eutectic Si modification of Al-7Si-0. 4Mg alloy, Journal of Korea Foundry Society 34 (2014) 248-253.

Google Scholar

[16] J.Y. Chang and H. S. Ko, Twin probability of eutectic Si in rare earth modified Al-7wt%Si alloy, J. Mater. Sci. Lett. 19 (2000) 197-199.

Google Scholar

[17] K. Nogita, J. Drennan and A.K. Dahle, Evaluation of Silicon Twinning in Hypo-Eutectic Al–Si Alloys, Materials Trans. 44 (2003) 625-628.

DOI: 10.2320/matertrans.44.625

Google Scholar

[18] J.H. Li, M. Albu, T.H. Ludwig, Y. Matsubara, F. Hofer, L. Arnberg, Y. Tsunekawa and P. Schumacher, Modification of eutectic Si in Al-Si based alloys, Mater. Sci. Forum 794-796 (2014) 130-136.

DOI: 10.4028/www.scientific.net/msf.794-796.130

Google Scholar

[19] E. Sjölander, S. Seifeddine, Artificial ageing of Al-Si-CuMg casting alloys, J. Mater. Process. Technol. 210 (2010) 1249-1259.

DOI: 10.1016/j.jmatprotec.2010.03.020

Google Scholar