[1]
J.F. Bates and E.R. Gilbert, Experimental evidence for stress enhanced swelling. Ibid. 59(2) (1976) 95-102.
Google Scholar
[2]
J.F. Bates and E.R. Gilbert, Effects of stress on swelling in 316 stainless steel. Ibid, 71 (1978) 286-292.
Google Scholar
[3]
V.S. Neustroev, S.V. Belozerov, E.I. Makarov and A.V. Obukhov. Effect of tensile stresses on the evolution of vacancy porosity in the Fe-18% Cr-10% Ni-Ti steel irradiated in BOR-60 reactor. The Physics of Metals and Metallography, 115(10) (2014).
DOI: 10.1134/s0031918x14100111
Google Scholar
[4]
B.Z. Margolin, A.I. Murashova and V.S. Neustroev. The influence of stress on radiation swelling of austenitic steels. Problems of material engineering (Voprosy Materialovedeniya), 4(68) (2011) 124-139.
Google Scholar
[5]
S. Miyashiro, S. Fujita and T. Okita, MD simulations to evaluate the influence of applied normal stress or deformation on defect production rate and size distribution of clusters in cascade process for pure Сu, J. Nucl. Mater. 415 (2011) 1-4.
DOI: 10.1016/j.jnucmat.2011.03.056
Google Scholar
[6]
S. Di, Z. Yao, M. Daymond, F. Gao, Molecular dynamics simulations of irradiation cascades in alpha-zirconium under macroscopic strain, Nucl. Instr. Meth. B. 303 (2013) 95-99.
DOI: 10.1016/j.nimb.2013.01.048
Google Scholar
[7]
F. Gao, D. Bacon, P. Flewitt and T. Lewis, The influence of strain on defect generation by displacement cascades in alpha-iron, Nucl. Instr. Meth. B. 180 (2001) 187-193.
Google Scholar
[8]
B. Beeler, M. Asta, P. Hosemann and N. Grønbech-Jensen, Effects of applied strain on radiation damage generation in body-centered cubic iron, J. Nucl. Mater. 459 (2015) 159-165.
DOI: 10.1016/j.jnucmat.2014.12.111
Google Scholar
[9]
A.V. Korchuganov, K.P. Zolnikov, D.S. Kryzhevich, V.M. Chernov, and S.G. Psakhie, Simulation of plastic deformation initiation in a mechanically-loaded crystals under radiation exposure. Problems of atomic science and engineering: Fusion (in Russian), 38(1) (2015).
DOI: 10.1134/s1063778816070073
Google Scholar
[10]
S. Miyashiro, S. Fujita, T. Okita and H. Okuda, MD simulations to evaluate effects of applied tensile strain on irradiation-induced defect production at various PKA energies, Fusion Eng. Des. 87(7-8) (2012) 1352-1355.
DOI: 10.1016/j.fusengdes.2012.03.012
Google Scholar
[11]
G.J. Ackland, M.I. Mendelev, D.J. Srolovitz, S.W. Han and A.V. Barashev. Development of an interatomic potential for phosphorus impurities in a-iron. J. Phys.: Condens. Matter, 16 (2004) S2629-S2642.
DOI: 10.1088/0953-8984/16/27/003
Google Scholar
[12]
E.E. Bloom, S.J. Zinkle and F.W. Wiffen, Materials to deliver the promise of fusion power – progress and challenges. J. Nucl. Mater. 329–333 (2004) 12-19.
DOI: 10.1016/j.jnucmat.2004.04.141
Google Scholar
[13]
N Baluc, Materials for fusion power reactors. Plasma Phys. Control. Fusion. 48 (2006) B165-B177.
DOI: 10.1088/0741-3335/48/12b/s16
Google Scholar
[14]
V. Loup. Computer Experiments on Classical Fluids. I. Thermodynamical Properties of Lennard−Jones Molecules. Phys. Rev. 159 (1967) 98-103.
DOI: 10.1103/physrev.159.98
Google Scholar
[15]
M. Tikhonchev, V. Svetukhin, A. Kadochkin and E. Gaganidze, MD simulation of atomic displacement cascades in Fe–10 at. %Cr binary alloy, J. Nucl. Mater. 395 (2009) 50-57.
DOI: 10.1016/j.jnucmat.2009.09.015
Google Scholar