Improvement in Plastic Strain Ratio of AA1050 Al Alloy Sheet by Enhancing the <111>//ND Texture Component

Article Preview

Abstract:

The average plastic strain ratio (the R-value) and the anisotropy parameter |ΔR| calculated from the measured texture of AA1050 Al alloy sheet treated by the heavy asymmetric rolling by 84% reduction in thickness and subsequent annealing for 1 h at 500 °C, followed by light rolling by 10% or 20% reduction in thickness and the subsequent annealing for 1 h at 500 °C increased by 1.52 times that of the non-processed specimen and reduced to 1/12 times that of the non-processed specimen, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

203-209

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. T. Lankford, S. C. Snyder, J. A. Bausher, New criteria for predicting the press performance of deep drawing sheets, Trans. ASM. 42 (1950) 1197-1205.

Google Scholar

[2] R.L. Whiteley, The importance of directionality in drawing quality sheet steel, Trans. ASME. 52 (1960) 154-161.

Google Scholar

[3] D.V. Wilson, R.D. Butler, The role of cup-drawing tests in measuring drawability, J. Inst. Met. 90 (1962) 473-483.

Google Scholar

[4] M. Atkinson, The limiting drawing ratio for plastic instability of the cup-drawing process, Sheet Met. Ind. 44 (1964) 167-178.

Google Scholar

[5] D.H. Lloyd, Metallurgical Engineering in the Pressed Metal Industry, Sheet Met. Ind. 39 (1962) 82-91.

Google Scholar

[6] W.F. Hosford, C. Kim, The dependence of deep-drawability on normal anisotropy; crystallographic analysis, Metall. Trans. 7A (1976) 468-472.

DOI: 10.1007/bf02642846

Google Scholar

[7] R. Hill, Mathematical Theory of Plasticity, Oxford University Press (1950) 315-340.

Google Scholar

[8] W.F. Hosford and R.M. Caddel, Metal Forming – Mechanics and Metallurgy, Prentice Hall International Editions (1983) 269-272.

Google Scholar

[9] R. Hill, Theoretical plasticity of textured aggregates, Math. Proc. Cambridge Phil. Soc. 85 (1979) 179-191.

DOI: 10.1017/s0305004100055596

Google Scholar

[10] D.N. Lee, Relation between limiting drawing ratio and plastic strain ratio, J. Mater. Sci. Letters, 3 (1984) 677-680.

DOI: 10.1007/bf00719921

Google Scholar

[11] D.N. Lee, Theoretical dependence of limiting drawing ratio on plastic strain ratio, in : H.J. McQueen, J.P. Bailon, J.I. Dickson, J.J. Jonas, M.G. Akben (Eds. ) Proc. 7th Int. Conf. on the Strength of Metals and Alloys, Pergamon Press (1985).

Google Scholar

[12] D.N. Lee, K.H. Oh, Calculation of plastic strain ratio from the texture of cubic metal sheet, J. Mater. Sci. 20 (1985) 3111-3118.

DOI: 10.1007/bf00545175

Google Scholar

[13] V.M. Segal, Equal channel angular extrusion: from macromechanics to structure formation, Mater. Sci. Eng. A271 (1999) 322-333.

DOI: 10.1016/s0921-5093(99)00248-8

Google Scholar

[14] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, The Shearing characteristics associated with equal-channel angular pressing, Mater. Sci. Eng. A257 (1998) 328-332.

DOI: 10.1016/s0921-5093(98)00750-3

Google Scholar

[15] J.Y. Park, S.H. Hong, D.N. Lee, Deformation and annealing textures of equal channel angular pressed 1050 Al alloy strips, Mater. Sci. Eng. A497 (2008) 395-407.

DOI: 10.1016/j.msea.2008.07.047

Google Scholar

[16] K.H. Kim, D.N. Lee, Analysis of deformation textures of asymmetrically rolled aluminum sheets, Acta. Metall. 49 (2001) 2583-2595.

DOI: 10.1016/s1359-6454(01)00036-2

Google Scholar

[17] J. H Lee, G. H Kim, S. K Nam, I. Kim, D.N. Lee, Calculation of plastic strain ratio of AA1050 Al alloy sheet processed by heavy asymmetric rolling-annealing, followed by light rolling-annealing, Comp. Mater. Sci. 100 (2015) 45-51.

DOI: 10.1016/j.commatsci.2014.09.049

Google Scholar

[18] D.N. Lee, K.H. Kim, Effects of asymmetric rolling parameters on texture development in aluminum sheets in : M.Y. Demeri (Ed. ) Proc. 2nd Glob. Sympo. on Innovations in Processing and Manufacturing of Sheet Materials, TMS, Warrendale, Penn. (2001).

Google Scholar

[19] G.I. Taylor, Plastic strain in metals, J. Inst. Metals, 62 (1938) 307-324.

Google Scholar

[20] J.F.W. Bishop, R. Hill, XLVI. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses, CXXVIII. A theoretical derivation of the plastic properties of a polycrystalline face-centred metal, Phil. Mag. 42 (1951).

DOI: 10.1080/14786444108561385

Google Scholar

[21] D.N. Lee, H.N. Han, S.J. Kim, Rolling and annealing textures of silver sheets, in : A.D. Rollett (Ed. ), Proc. 15th Int. Conf. on Textures of Materials, Symposium 10: Recrystallization texture: Retrospective vs. Current Problems, The American Ceramic Society and TMS, 2008, Paper 10_Lee.

DOI: 10.1002/9780470444214.ch50

Google Scholar

[22] S.J. Kim, H.N. Han, H.T. Jeong, D.N. Lee, Evolution of {110}<110> texture in silver sheets, Mater. Res. Innov. 15(1) (2011) S390-S394.

DOI: 10.1179/143307511x12858957675110

Google Scholar

[23] K.H. Oh, S.M. Park, Y.M. Koo, D.N. Lee, Thermomechanical treatment for enhancing gamma fiber component in recrystallization texture of copper-bearing bake hardening steel, Mater. Sci. Eng. A258 (2011) 6455-6462.

DOI: 10.1016/j.msea.2011.04.081

Google Scholar

[24] C.C. Merriman, D.P. Field, P. Trivedi, Orientation dependence of dislocation structure evolution during cold rolling of aluminum, Mater. Sci. Eng. A494 (2008) 28-35.

DOI: 10.1016/j.msea.2007.10.090

Google Scholar

[25] S.B. Lee, D.I. Kim, S.H. Hong, D.N. Lee, Texture evolution of abnormal grains with post- deposition annealing temperature in nanocrystalline Cu thin films, Metall. Mater. Trans. 44A (2013) 152-162.

DOI: 10.1007/s11661-012-1542-5

Google Scholar

[26] S.B. Lee, D.I. Kim, Y. Kim, S.J. Yoo, J.Y. Byun, H.N. Han, D.N. Lee, Effect of film stress and geometry on texture evolution before and after the martensitic transformation in a nanocrystalline Co thin film, Metall. Mater. Trans. A, 46A (2015).

DOI: 10.1007/s11661-015-2778-7

Google Scholar

[27] D.N. Lee, Texture and Related Phenomena, second ed., The Korean Institute of Metals and Materials, Seoul, Korea, 2014, p.171.

Google Scholar

[28] H.J. Bunge, Texture Analysis in Material Science, Butterworth, Guildford, UK (1982) 47-118, 330-338.

Google Scholar

[29] H.J. Bunge, C.S. Esling (Eds. ), Quantitative Texture Analysis, German Society for Metallurgy, Germany and Société Française de metallurgy, France, All Rights Reserved, 1982, pp.129-160.

Google Scholar