[1]
A.V. Kulemin, V.V. Kononov, I.A. Stebel'kov, Increasing the fatigue strength of parts by ultrasonic surface treatment, Strength Mater. 13(1) (1981) 76-81.
DOI: 10.1007/bf00762609
Google Scholar
[2]
Y.S. Pyoun, et al. Development of Evolutionary Cone Type LSD for SUV/RV Utilizing the Axiomatic Approach and the Ultrasonic Nanocrystal Surface Modification Technology, Int. J. Automot. Technol. 9(1) (2008) 61-70.
DOI: 10.1007/s12239-008-0008-7
Google Scholar
[3]
A. Cherif, Y. Pyoun, B. Scholtes. Effects of Ultrasonic Nanocrystal Surface Modification (UNSM) on Residual Stress State and Fatigue Strength of AISI 304, J. Mater. Eng. Perform. 19(2) (2010) 282-286.
DOI: 10.1007/s11665-009-9445-3
Google Scholar
[4]
C.S. Lee, et al. Rolling Contact Fatigue Characteristics of SAE52100 by Ultrasonic Nanocrystal Surface Modification Technology, Int. J. Mod. Phys. B. 24. 15n16 (2010) 3065-3070.
DOI: 10.1142/s0217979210066094
Google Scholar
[5]
I.S. Cho, et al. Wear Behavior of Cu–Zn Alloy by Ultrasonic Nanocrystalline Surface Modification, J. Nanosci. Nanotechnol. 11(7) (2011) 6443-6447.
DOI: 10.1166/jnn.2011.4419
Google Scholar
[6]
B. Wu, et al. Effect of Ultrasonic Nanocrystal Surface Modification on the Fatigue Behaviors of Plasma-nitrided S45C Steel, Surf. Coat. Tech. 213 (2012) 271-277.
DOI: 10.1016/j.surfcoat.2012.10.063
Google Scholar
[7]
M. Yasuoka, et al. Improvement of the Fatigue Strength of SUS304 Austenite Stainless Steel Using Ultrasonic Nanocrystal Surface Modification, Surf. Coat. Tech. 218 (2013) 93-98.
DOI: 10.1016/j.surfcoat.2012.12.033
Google Scholar
[8]
A. Amanov, Y.S. Pyun, S. Sasaki. Effects of Ultrasonic Nanocrystalline Surface Modification (UNSM) Technique on the Tribological Behavior of Sintered Cu-based Alloy, Tribol. Int. 72 (2014) 187-197.
DOI: 10.1016/j.triboint.2013.12.003
Google Scholar
[9]
A.Y. Vorobyev, C. Guo, Multifunctional surfaces produced by femtosecond laser pulses, J. Appl. Phys. 117 (2015) 033103.
Google Scholar
[10]
A. Iula, et al. Finite Element Three-dimensional Analysis of the Vibrational Behaviour of the Langevin-type Transducer, Ultrasonics, 40(1) (2002) 513-517.
DOI: 10.1016/s0041-624x(02)00174-9
Google Scholar
[11]
S.Y. Lin, Theories and Designs of the Ultrasonic Transducer, first ed., Science Press, ISBN 9787030134196, (2004).
Google Scholar
[12]
D.M. Lin, Theories and Designs of the Ultrasonic Horn, Science Press, ISBN 9787030000088, (1987).
Google Scholar
[13]
A.S. Nanu, N.I. marinescu, D. Ghiculescu, Study on Ultrasonic Stepped Horn Geometry Design and FEM Simulation, Nonconvent. Technol. Rev. 4 (2011) 25-30.
Google Scholar
[14]
X.Y. Cheng, A New Type of Rotary Ultrasonic Composite Grinding Head and Serialization, Tianjin University, Tianjin China, (2005).
Google Scholar