High Efficient White-Phosphorescence PLEDs by Using Water/Alcohol-Soluble Polyelectrolyte as an Electron Injection Layer

Article Preview

Abstract:

High efficient white polymer light-emitting diodes (WPLEDs) were fabricated with blue- fluorescent polymers(PFO) and yellow- phosphorescent polymers(PFCz2-NPYIrm5) blending as light emitting layer, and a water/alcohol-soluble polymer poly [(9,9-bis(3′-((N,N-dimethyl)-N-ethylammonium)propyl)-2,7-fluorene)-2,7-(9,9-dioctylfluorene) - 4,7-(2,1,3- benzoselenadiazole)]dibromide(PFN) as electron injection layer. The structure of the devices used here is: ITO/PEDOT-PSS(40nm)/PVK(30nm)/PFO: PFCz2-NPYIrm5 (60nm)/PFN(20nm)/Ba(4nm)/Al(120nm). When the doping concentration of PFCz2-NPYIrm5 was 1% and PFN film thickness was about 20nm, the EL emissions from the host and the guests were observed simultaneously and the efficient white light emission with coordinates of (0.34,0.32) was achieved. A maximum external quantum efficiency of 4.8% and luminous efficiency of 6.6cd/A was obtained at 8.5V.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

494-498

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. W. D'Andrade and S. R. Forrest: Adv. Mater. Vol. 16(2004), p.1585.

Google Scholar

[2] Y. Cao, I.D. Park, G. Yu, C. Zhang, A .J. Heeger: Nature, Vol. 397(1999), p.414.

Google Scholar

[3] Y. H. Xu, J. B. Peng, J. X. Jiang, W. Xu, W. Yang, and Y. Cao: Appl. Phys. Lett. Vol. 87(2005), p.193502.

Google Scholar

[4] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest: Nature London Vol. 395(1998), p.151.

Google Scholar

[5] A. Baldo, C. Adachi, and S. R. Forrest: Phys. Rev. B Vol. 62(2000), p.10967.

Google Scholar

[6] Holzer W, Penzkofer A, Tsuboi T: Chem. Phy. 308 (2005), p.93.

Google Scholar

[7] G. Cheng, Y. F. Zhang, Y. Zhao, and S. Y. Liu: Appl. Phys. Lett. Vol. 88(2006), p.083512.

Google Scholar

[8] G. Li, J. Shinar: Appl. Phys. Lett. Vol. 83(2003), p.5359.

Google Scholar

[9] R. S. Deshpande, V. Bulovic, S. R. Forrest: Appl. Phys. Lett. Vol. 75(1999), p.888.

Google Scholar

[10] B. W. D'Andrade, J. Brooks, V. Adamovich, M. E. Thompson, and S. R. Forrest: Adv. Mater. Vol. 14(2002), p.1032.

Google Scholar

[11] B. W. D'Andrade and S. R. Forrest: J. Appl. Phys. Vol. 94(2003), p.3101.

Google Scholar

[12] C. C. Changa and J. F. Chen: Appl. Phys. Lett. Vol. 87 (2005), p.253501.

Google Scholar

[13] G. K. Ho, H. F. Meng, and S. C. Lin: Appl. Phys. Lett. Vol. 85(2004), p.15.

Google Scholar

[14] F. Huang, L. T. Hou, H. B. Wu, X. H. Wang, H. L. Shen, W. Cao, W. Yang, and Y. Cao: J. Am. Chem. Soc. Vol. 126(2004), p.9845.

Google Scholar

[15] F. Huang, L. T. Hou, H. L. Shen, R. Q. Yang, Q. Hou, and Y. Cao: J. Polym. Sci., Part A: Polym. Chem. Vol. 44(2006), p.2521.

Google Scholar

[16] L. T. Hou, F. Huang, W. J. Zeng, J. B. Peng, and Y. Cao: Appl. Phys. Lett. Vol. 87(2005), p.153509.

Google Scholar

[17] H. Y. Zhen, C. Luo, W. Yang, W. Y. Song, B. Du, J. X. Jiang, C. Y. Jiang, Y. Zhang, and Y. Cao: Macromolecules, Vol. 39(2006), p.1693.

Google Scholar

[18] F. Huang, H. B. Wu, D. L. Wang, W. Yang, and Y. Cao: Chem. Mater. Vol. 16(2004), p.708.

Google Scholar

[19] H. B. Wu, F. Huang, Y. Q. Mo, W. Yang, D. L. Wang, J. B. Peng, Y. Cao: Adv. Mater. Vol. 16(2004), p.1826.

Google Scholar

[20] V. Cimrova,U. Scherf, and D. Neher: Appl. Phys. Lett. Vol. 69 (1996), p.29.

Google Scholar