An H Design Approach for the Heading Hold Autopilot of a Flying Wing UAV

Article Preview

Abstract:

The paper presents a modified loop shaping approach for the design of the automatic flight control system of an unmanned air vehicle’s lateral-directional dynamics. The design objectives include robust stabilization with respect to modeling uncertainties, heading angle tracking of an ideal model, coordinated turn and reduced sensitivity with respect to low frequency measurement errors. Based on the resulting full order controller one determined a reduced order controller. The numerical results show that both the full order and the reduced order autopilots accomplish the design objectives.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

315-322

Citation:

Online since:

June 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Stenfelt and U. Ringertz: Lateral Stability and Control of Tailless Aircraft Configuration, Fournal of Aircraft, Vol. 46, No. 6 (2009), pp.2161-2164.

DOI: 10.2514/1.41092

Google Scholar

[2] A.D. Ngo, W.C. Reigelsperger and S.S. Banda: Tailless Aircraft Control Law Design Using Dynamic Inversion and -Synthesis, Proceedings of the 1996 IEEE International Conference on Control Applications, September 15-18, 1996, Dearborn, MI, pp.107-112.

DOI: 10.1109/cca.1996.558615

Google Scholar

[3] M. Voskuijl, G. La Rocca and F. Dircken: Controllability of Blended Wing Body Aircraft, Proceedings of the 26th International Congress of the Aeronautical Sciences (ICAS), USA, (2008).

Google Scholar

[4] R.W. Beard and T.W. Mclain: Small Unmanned Aircraft: Theory and Practice, Princeton University Press (2012).

Google Scholar

[5] R.J. Adams, J.M. Buffington, A.G. Sparks and S.S. Banda: Robust Multivariable Flight Control, Springer Verlag (1994).

Google Scholar

[6] B.L. Stevens and F.L. Lewis: Aircraft Control and Simulation, Wiley-Interscience (1992).

Google Scholar

[7] A. -M. Stoica: Controller Design for a Flying Wing Unmanned Aerial Vehicle, Proceedings of ICMERA, 24-27 October 2013, Bucharest, Romania.

Google Scholar

[8] V.G. Nair, M.V. Dileep and V.I. George: Aircraft yaw control system using LQR and fuzzy logic controller. International Journal of Computer Applications, Vol. 45, No. 9 (2012), pp.25-30.

Google Scholar

[9] D. McFarlane and K. Glover: A loop shaping design procedure using synthesis, IEEE Transactions on Automatic Control, Vol. 37, No. 6 (1992), pp.759-769.

DOI: 10.1109/9.256330

Google Scholar

[10] G. Papageorgiou, K. Glover, A. Smerlas and I. Poslethwaite: Loop Shaping in: Robust Flight Control. A Design Challenge, edited by J.F. Magni, S. Bennani and J. Terlouw, Springer-Verlag (1997), pp.64-80.

DOI: 10.1007/bfb0113851

Google Scholar

[11] G. Papageorgiou, K. Glover and R. A. Hyde: The Loop Shaping Approach in: Robust Flight Control. A Design Challenge, edited by J.F. Magni, S. Bennani and J. Terlouw, Springer-Verlag (1997), pp.464-483.

DOI: 10.1007/bfb0113873

Google Scholar

[12] J. Lopez, R. Dormido, S. Dormido and J.P. Gomez: A Robust Controller for an UAV Flight Control System, Scientific World Journal, Hindawi Publishing Corporation, Article ID 403236 (2015).

DOI: 10.1155/2015/403236

Google Scholar

[13] User Guide for mini UAS Hirrus v1. 2, Autonomous Flight Technology (2015).

Google Scholar

[14] D. McLean: Automatic Flight Control Systems, Prentice Hall International (1990).

Google Scholar

[15] D.C. McFarlane and K. Glover: Robust Controller Design Using Normalized Coprime Factor Plant Descriptions, Springer-Verlag (1990).

DOI: 10.1007/bfb0043199

Google Scholar

[16] K. Glover: All optimal Hankel Norm Approximations of linear multivariable systems and their -error bounds, International Journal of Control, Vol. 39 (1984), pp.1115-1193.

DOI: 10.1080/00207178408933239

Google Scholar

[17] MIL-STD-1797A. Flying Qualities of Piloted Aircraft (1997).

Google Scholar