Influence of Modal Coupling on the Nonlinear Vibration of Simply Supported Cylindrical Panels

Article Preview

Abstract:

The aim of this paper is to analyse the influence of the nonlinear modal coupling on the nonlinear vibrations of a simply supported cylindrical panel excited by a time dependent transversal load. The cylindrical panel is modeled by the Donnell nonlinear shallow shell theory and the lateral displacement field is based on a perturbation procedure. The axial and circumferential displacement are described in terms of the obtained lateral displacement, generating a precise low-dimensional model that satisfies all transversal boundary conditions. The discretized equations of motion in time domain are determined by applying the standard Galerkin method. Various numerical techniques are employed to obtain the cylindrical panel resonance curves, bifurcation scenario and basins of attraction. The results show the influence of geometry and the nonlinear modal coupling on the nonlinear response of the cylindrical panel.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

106-118

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.W. Leissa, A.S. Kadi, Curvature effects on shallow shell vibrations, Journal of Sound and Vibration 16 (1971) 173-187.

DOI: 10.1016/0022-460x(71)90482-2

Google Scholar

[2] D. Hui, Influence of geometric imperfections and in-plane constraints on nonlinear vibrations of simply supported cylindrical panels, Journal of Applied Mechanics 51 (1984) 383-390.

DOI: 10.1115/1.3167629

Google Scholar

[3] CY. Chia, Nonlinear vibration and postbuckling of unsymmetrically laminated imperfect shallow cylindrical panels with mixed boundary conditions resting on elastic foundation, International Journal of Engineering Science 25 (1987) 427-441.

DOI: 10.1016/0020-7225(87)90069-3

Google Scholar

[4] S. Yamada, J.G.A. Croll, Buckling behavior of pressure loaded cylindrical panels, Journal of Engineering Mechanics 115 (1989) 327-344.

DOI: 10.1061/(asce)0733-9399(1989)115:2(327)

Google Scholar

[5] A. A. Popov, J.M.T. Thompson, J.G.A. Croll, Bifurcation analyses in the parametrically excited vibrations of cylindrical panels, Nonlinear Dynamics 17 (1998) 205-225.

Google Scholar

[6] M. Amabili, Nonlinear vibrations of circular cylindrical panels, Journal of Sound and Vibration 281 (2005) 509-535.

DOI: 10.1016/j.jsv.2004.01.021

Google Scholar

[7] F. Alijani, M. Amabili, Nonlinear vibrations of thick laminated circular cylindrical panels, Composite Structures 96 (2013) 643-660.

DOI: 10.1016/j.compstruct.2012.09.016

Google Scholar

[8] V.D. Kubenko, P. S. Koval'chuk, Nonlinear problems of the vibration of thin shells (review), International Applied Mechanics 34 (1998) 703-728.

DOI: 10.1007/bf02702126

Google Scholar

[9] F. Moussaoui, R. Benamar, Non-linear vibrations of shell-type structures: a review with bibliography, Journal of Sound and Vibration 255 (2002) 161-184.

DOI: 10.1006/jsvi.2001.4146

Google Scholar

[10] M. Amabili, M. P. Paidoussis, Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shell and panels, with and without fluid-structure interaction, Applied Mechanics Reviews 56 (2013) 349-381.

DOI: 10.1115/1.1565084

Google Scholar

[11] F. Alijani, M. Amabili, Non-linear vibrations of shells: a literature review from 2003 to 2013, International Journal of Non-Linear Mechanics 58 (2014) 233-257.

DOI: 10.1016/j.ijnonlinmec.2013.09.012

Google Scholar

[12] H.N. Chu, Influence of large-amplitudes on flexural vibrations of a thin circular cylindrical shell, Journal of Aerospace Science 28 (1961) 602-609.

DOI: 10.2514/8.9113

Google Scholar

[13] J. Nowinski, Nonlinear transverse vibrations of orthotropic cylindrical shells, AIAA Journal 1 (1963) 617-620.

DOI: 10.2514/3.1604

Google Scholar

[14] D. A Evensen, Some observations on the nonlinear vibration of thin cylindrical shells, AIAA Journal 1 (1963) 2857-2858.

DOI: 10.2514/3.2188

Google Scholar

[15] M.D. Olson, Some experimental observations on the nonlinear vibration of cylindrical shells, AIAA Journal 3 (1965) 1775-1777.

DOI: 10.2514/3.55196

Google Scholar

[16] E.H. Dowell, C.S. Ventres, Modal equations for the nonlinear flexural vibrations of a cylindrical shell, International Journal of Solids and Structures 4 (1968) 975-991.

DOI: 10.1016/0020-7683(68)90017-6

Google Scholar

[17] S. Atluri S, A perturbation analysis of non-linear free flexural vibrations of a circular cylindrical shell, International Journal of Solids and Structures 8 (1972) 549-569.

DOI: 10.1016/0020-7683(72)90022-4

Google Scholar

[18] P.B. Gonçalves, R.C. Batista, Nonlinear vibration analysis of fluid-filled cylindrical shells, Journal of Sound and Vibration 127 (1988) 133-143.

DOI: 10.1016/0022-460x(88)90354-9

Google Scholar

[19] P.B. Gonçalves, F.M.A. Silva, Z.J.G.N. Prado, Low-dimensional models for the nonlinear vibration analysis of cylindrical shells based on a perturbation procedure and proper orthogonal decomposition, Journal of Sound and Vibration 315 (2008).

DOI: 10.1016/j.jsv.2008.01.063

Google Scholar

[20] F.M.A. Silva, P.B. Gonçalves, Z.J.G.N. Prado, An alternative procedure for the non-linear vibration analysis of fluid-filled cylindrical shells, Nonlinear Dynamics 66 (2011) 303-333.

DOI: 10.1007/s11071-011-0037-z

Google Scholar

[21] G.W. Hunt, K.A.J. Williams, R.G. Cowell, Hidden symmetry concepts in the elastic buckling of axially loaded cylinders, International Journal of Solid and Structures 22 (1986) 1501-1515.

DOI: 10.1016/0020-7683(86)90058-2

Google Scholar

[22] J. Awrejcewicz, A.V. Krys'ko, Analysis of complex parametric vibrations of plates and shells using Bubnov-Galerkin approach, Archive of Applied Mechanics 73 (2003) 495-504.

DOI: 10.1007/s00419-003-0303-8

Google Scholar

[23] R. Seydel, From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis, Elsevier Science Publishing, New York, (1988).

Google Scholar

[24] M. Amabili, M. Pellegrini, M. Tommesani, Experiments on large-amplitude vibrations of a circular cylindrical panel, Journal of Sound and Vibration 260 (2003) 537-547.

DOI: 10.1016/s0022-460x(02)00959-8

Google Scholar

[25] A.H. Nayfeh, B. Balachandran, Applied nonlinear dynamics: analytical, computational and experimental methods, John Wiley & Sons, Inc., (1995).

Google Scholar