[1]
Ravi N, Sastikumar D, Subramanian N, Nath A. K, Masilamani V. Micro hardness and Microstructure studies on laser surface alloyed aluminium alloy with Ni-Cr. Materials and Manufacturing Processes, 2000, 15: 395-404.
DOI: 10.1080/10426910008912995
Google Scholar
[2]
Clyne T. W, Withers P.J. An Introduction to metal matrix composites. Cambridge University Press, (1993).
Google Scholar
[3]
Gupta.M., Mohamed F.A., Lavernia E.J. Solidification behavior of Al-Li-SiCp MMCs processed using variable co-deposition of multi-phase materials. Materials and Manufacturing processes, 1990, 5(2): 165-196.
DOI: 10.1080/10426919008953242
Google Scholar
[4]
Mabhali L.A.B., Pityana S.L., Sacks.N. Laser surface alloying of aluminium(AA1200) with Ni and SiC powders. Materials and Manf processes, 2010, 25: 1397-1403.
DOI: 10.1080/10426914.2010.498073
Google Scholar
[5]
Valiev R.Z., Korznikov A.V., Mulyukov R.R. Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Material science Engineering A, 1993, 168: 141-148.
DOI: 10.1016/0921-5093(93)90717-s
Google Scholar
[6]
Sabirov.I., Murashkin M.Y., Valiev R.Z. Nano structured aluminium alloys produced by severe plastic deformation: New horizons in development. Material Science Engineering A, 2013, 560: 1-24.
DOI: 10.1016/j.msea.2012.09.020
Google Scholar
[7]
Saito.Y., Utsunomiya.H., Tsuji.N., Sakai.T. Novel ultra-high straining process for bulk materials development of accumulative roll- bonding (ARB) process. Acta Materials, 1999, 47: 579-583.
DOI: 10.1016/s1359-6454(98)00365-6
Google Scholar
[8]
Sakai.G., Horita.Z., Langdon T.G. Grain refinement and super plasticity in an aluminium alloy processed by high pressure torsion. Material Science Engineering A, 2005, 393: 344-351.
DOI: 10.1016/j.msea.2004.11.007
Google Scholar
[9]
Valiev, R.Z., Langdon, T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Mater. Sci, 2006, 51: 881–981.
DOI: 10.1016/j.pmatsci.2006.02.003
Google Scholar
[10]
Sakai, T., Belyakov, A., Miura, H. Ultrafine Grain Formation in Ferritic Stainless Steel during Severe Plastic Deformation. Metall. Mater. Trans A, 2008: 2206–2214.
DOI: 10.1007/s11661-008-9556-8
Google Scholar
[11]
Mishra, R.S., Mahoney, M.W., McFadden, S.X., Mara, N.A., Mukherjee, A.K. High strain rate super plasticity in a friction stir processed 7075 Al alloy. Scripta Mater, 1999, 42: 163–168.
DOI: 10.1016/s1359-6462(99)00329-2
Google Scholar
[12]
Mishra RS, Mahoney MW, McFadden, Mukherjee AK. Tensile mechanical properties and failure behavior of FSP modified Mg-Al-Zn and dual phase Mg-Li-Al-Zn Alloys. Scripta Mater, 2000, 42: 163–168.
DOI: 10.5772/54313
Google Scholar
[13]
Su JQ, Nelson TW, Sterling CJ. A new route to bulk Nano crystalline materials. J Material Research, 2003, 18: 1757–1760.
Google Scholar
[14]
Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R, 2005, 50: 1–78.
Google Scholar
[15]
Hsu CJ, Kao PW, Ho NJ. Ultrafine-grained Al-Al2Cu composite produced in situ by friction stir processing. Scripta Mater, 2005, 53: 341–345.
DOI: 10.1016/j.scriptamat.2005.04.006
Google Scholar
[16]
Lee IS, Kao PW, Ho NJ. Microstructural and Mechanical properties of Al-Fe in situ Nano composite produced by friction stir processing. Intermetallic, 2008, 16: 1104–1108.
DOI: 10.1016/j.intermet.2008.06.017
Google Scholar
[17]
Alidokht S.A., Abdollah-zadeh., Soleymani.S., Assadi.H. Microstructure and tribological performance of an aluminium alloy based hybrid composite produced by friction stir processing. Materials and Design, 2011, 32: 2727-2733.
DOI: 10.1016/j.matdes.2011.01.021
Google Scholar
[18]
Ma.Z.Y. Friction stir processing technology: A review. Metallurgy Material Trans A 2008, 39: 642-58.
Google Scholar
[19]
Nakata.K., Inoki.S., Nagano.Y., Ushio.M. Friction stir welding of Al2O3 particulate 6061Al alloy composite. Material Science forum, 2003, 2873-8: 426-432.
DOI: 10.4028/www.scientific.net/msf.426-432.2873
Google Scholar
[20]
Essam R.I. Mahmoud, Makoto Takahashi, Toshiya Shibayanagi, Kenji Ikeuchi. Wear characteristics of surface-hybrid-MMCs layer fabricated on aluminum plate by friction stir processing. Wear, 2010, 268: 1111–1121.
DOI: 10.1016/j.wear.2010.01.005
Google Scholar
[21]
I.S. Lee.,C.J. Hsu.,C.F. Chen.,N.J. Ho.,P.W. Kao. Particle reinforced aluminium matrix composites produced from powder mixtures via friction stir processing. Composites Science and Technology, 2011, 71: 693-698.
DOI: 10.1016/j.compscitech.2011.01.013
Google Scholar
[22]
H.J. Liu, H. Fujii, K. Nogi. Microstructure and mechanical properties of friction stir welded joints of AC4A cast aluminium alloy. Materials Science Technology, 2004, 20 : 399–402.
DOI: 10.1179/026708304225012279
Google Scholar
[23]
K. Ohishi T.R. Mcnelley. Microstructural modification of as-cast Ni Al bronze by friction stir processing. Metallurgical and Materials Transactions A, 2004, 35: 2951–2961.
DOI: 10.1007/s11661-004-0242-1
Google Scholar
[24]
J.Q. Su, T.W. Nelson, C.J. Sterling. Friction stir processing of large-area bulk UFG aluminum alloys. Scripta Materialia, 2005, 52: 135–140.
DOI: 10.1016/j.scriptamat.2004.09.014
Google Scholar
[25]
D.C. Hofmann, K.S. Vecchio. Submerged friction stir processing (SFSP): an improved method for creating ultra-fine grained bulk materials. Materials Science and Engineering. A 2005, 402: 234–241.
DOI: 10.1016/j.msea.2005.04.032
Google Scholar
[26]
Min Yang • Chengying Xu • Chuansong Wu •Kuo-chi Lin • Yuh J. Chao • Linan An. Fabrication of AA6061/Al2O3 Nano ceramic particle reinforced composite coating by using friction stir processing. J Mater Sci, 2010, 45: 4431–4438.
DOI: 10.1007/s10853-010-4525-1
Google Scholar
[27]
Y. Mazaheri∗, F. Karimzadeh, M.H. Enayati. A novel technique for development of A356/Al2O3 surface Nanocomposite by friction stir processing. Journal of Materials Processing Technology, 2011, 211: 1614– 1619.
DOI: 10.1016/j.jmatprotec.2011.04.015
Google Scholar
[28]
Chen C.M., Kovacevic,R. Finite element modeling of friction stir welding thermal and thermomechanical analysis. Int. J. Mach. Tools Manuf. 2003, 43: 1319–1326.
DOI: 10.1016/s0890-6955(03)00158-5
Google Scholar
[29]
M. Shariftabar.,A. Sarani.,S. Khorshahian.,M. Shafiee Afarani. Fabrication of 5052 Al/Al2O3 Nano ceramic particle reinforced composite via friction stir processing route. Materials and Design. 2011, 32: 4164-4172.
DOI: 10.1016/j.matdes.2011.04.048
Google Scholar
[30]
Sato S.Y., Sugiura.Y., Shoji.Y., Park S.H.C., Kokawa.H., Ikeda.K. Post weld formability of friction stir welded Al alloy5052. Materials Science Engineering. A, 2004, 369: 138: 143.
DOI: 10.1016/j.msea.2003.11.035
Google Scholar
[31]
A. Shafiei-Zarghani, S.F. Kashani-Bozorg, A. Zarei- Hanzaki. Wear assessment of Al/Al2O3 Nano-composite surface layer produced using friction stir processing. Wear, 2011, 270: 403–412.
DOI: 10.1016/j.wear.2010.12.002
Google Scholar
[32]
S.R. Anvari, F. Karimzadeh, M.H. Enayati. Wear characteristics of Al–Cr–O surface Nano-composite layer fabricated on Al6061 plate by friction stir processing. Wear, 2013, 304: 144–151.
DOI: 10.1016/j.wear.2013.03.014
Google Scholar
[33]
A.M. Hassan, A.T. Mayyas, A. Alrashdan, M.T. Hayajneh. Wear behavior of Al–Cu and Al–Cu/SiC components produced by powder metallurgy. Journal of Materials Science, 2008, 43: 5368–5375.
DOI: 10.1007/s10853-008-2760-5
Google Scholar
[34]
H. Eskandari, R. Taheri. A Novel technique for development of aliminium alloy matrix/TiB2/ Al2O3 hybrid surface Nano composite by friction stir processing. Science direct. Procedia Materials Science, 2015, 11: 503 – 508.
DOI: 10.1016/j.mspro.2015.11.080
Google Scholar