Surface Reinforcement on Aluminium Matrix by Hybrid Nanocomposites via FSP: A Review

Article Preview

Abstract:

Aluminium hybrid composites are identified as new generation of metal matrix composites for its good strength to weight ratio and good corrosion resistance properties. However their mechanical properties and tribological properties are still lower than that of commonly applied materials. Hence it is necessary to improve the surface qualities of aluminium matrix and makes it suitable for engineering applications. Friction stir processing (FSP) is an emerging technique which can be used to make surface composites. While FSP of different alloys has been considerably reviewed, surface reinforcement by hybrid nanocomposites on aluminium matrix have not been wholesomely reviewed. The present review offers a comprehensive understanding of friction stir processed aluminium matrix hybrid nanocomposites. The available literature provide the details about the effect of process parameters, reinforcement particles, microstructural evolution during the fabrication of aluminium matrix hybrid nanosurface composites. Few research gaps in fabrication of aluminium matrix surface composites has been revealed in this review such as micro alloying with low melting point metals, defect free composites and interrelationship between process parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

110-117

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ravi N, Sastikumar D, Subramanian N, Nath A. K, Masilamani V. Micro hardness and Microstructure studies on laser surface alloyed aluminium alloy with Ni-Cr. Materials and Manufacturing Processes, 2000, 15: 395-404.

DOI: 10.1080/10426910008912995

Google Scholar

[2] Clyne T. W, Withers P.J. An Introduction to metal matrix composites. Cambridge University Press, (1993).

Google Scholar

[3] Gupta.M., Mohamed F.A., Lavernia E.J. Solidification behavior of Al-Li-SiCp MMCs processed using variable co-deposition of multi-phase materials. Materials and Manufacturing processes, 1990, 5(2): 165-196.

DOI: 10.1080/10426919008953242

Google Scholar

[4] Mabhali L.A.B., Pityana S.L., Sacks.N. Laser surface alloying of aluminium(AA1200) with Ni and SiC powders. Materials and Manf processes, 2010, 25: 1397-1403.

DOI: 10.1080/10426914.2010.498073

Google Scholar

[5] Valiev R.Z., Korznikov A.V., Mulyukov R.R. Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Material science Engineering A, 1993, 168: 141-148.

DOI: 10.1016/0921-5093(93)90717-s

Google Scholar

[6] Sabirov.I., Murashkin M.Y., Valiev R.Z. Nano structured aluminium alloys produced by severe plastic deformation: New horizons in development. Material Science Engineering A, 2013, 560: 1-24.

DOI: 10.1016/j.msea.2012.09.020

Google Scholar

[7] Saito.Y., Utsunomiya.H., Tsuji.N., Sakai.T. Novel ultra-high straining process for bulk materials development of accumulative roll- bonding (ARB) process. Acta Materials, 1999, 47: 579-583.

DOI: 10.1016/s1359-6454(98)00365-6

Google Scholar

[8] Sakai.G., Horita.Z., Langdon T.G. Grain refinement and super plasticity in an aluminium alloy processed by high pressure torsion. Material Science Engineering A, 2005, 393: 344-351.

DOI: 10.1016/j.msea.2004.11.007

Google Scholar

[9] Valiev, R.Z., Langdon, T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Mater. Sci, 2006, 51: 881–981.

DOI: 10.1016/j.pmatsci.2006.02.003

Google Scholar

[10] Sakai, T., Belyakov, A., Miura, H. Ultrafine Grain Formation in Ferritic Stainless Steel during Severe Plastic Deformation. Metall. Mater. Trans A, 2008: 2206–2214.

DOI: 10.1007/s11661-008-9556-8

Google Scholar

[11] Mishra, R.S., Mahoney, M.W., McFadden, S.X., Mara, N.A., Mukherjee, A.K. High strain rate super plasticity in a friction stir processed 7075 Al alloy. Scripta Mater, 1999, 42: 163–168.

DOI: 10.1016/s1359-6462(99)00329-2

Google Scholar

[12] Mishra RS, Mahoney MW, McFadden, Mukherjee AK. Tensile mechanical properties and failure behavior of FSP modified Mg-Al-Zn and dual phase Mg-Li-Al-Zn Alloys. Scripta Mater, 2000, 42: 163–168.

DOI: 10.5772/54313

Google Scholar

[13] Su JQ, Nelson TW, Sterling CJ. A new route to bulk Nano crystalline materials. J Material Research, 2003, 18: 1757–1760.

Google Scholar

[14] Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R, 2005, 50: 1–78.

Google Scholar

[15] Hsu CJ, Kao PW, Ho NJ. Ultrafine-grained Al-Al2Cu composite produced in situ by friction stir processing. Scripta Mater, 2005, 53: 341–345.

DOI: 10.1016/j.scriptamat.2005.04.006

Google Scholar

[16] Lee IS, Kao PW, Ho NJ. Microstructural and Mechanical properties of Al-Fe in situ Nano composite produced by friction stir processing. Intermetallic, 2008, 16: 1104–1108.

DOI: 10.1016/j.intermet.2008.06.017

Google Scholar

[17] Alidokht S.A., Abdollah-zadeh., Soleymani.S., Assadi.H. Microstructure and tribological performance of an aluminium alloy based hybrid composite produced by friction stir processing. Materials and Design, 2011, 32: 2727-2733.

DOI: 10.1016/j.matdes.2011.01.021

Google Scholar

[18] Ma.Z.Y. Friction stir processing technology: A review. Metallurgy Material Trans A 2008, 39: 642-58.

Google Scholar

[19] Nakata.K., Inoki.S., Nagano.Y., Ushio.M. Friction stir welding of Al2O3 particulate 6061Al alloy composite. Material Science forum, 2003, 2873-8: 426-432.

DOI: 10.4028/www.scientific.net/msf.426-432.2873

Google Scholar

[20] Essam R.I. Mahmoud, Makoto Takahashi, Toshiya Shibayanagi, Kenji Ikeuchi. Wear characteristics of surface-hybrid-MMCs layer fabricated on aluminum plate by friction stir processing. Wear, 2010, 268: 1111–1121.

DOI: 10.1016/j.wear.2010.01.005

Google Scholar

[21] I.S. Lee.,C.J. Hsu.,C.F. Chen.,N.J. Ho.,P.W. Kao. Particle reinforced aluminium matrix composites produced from powder mixtures via friction stir processing. Composites Science and Technology, 2011, 71: 693-698.

DOI: 10.1016/j.compscitech.2011.01.013

Google Scholar

[22] H.J. Liu, H. Fujii, K. Nogi. Microstructure and mechanical properties of friction stir welded joints of AC4A cast aluminium alloy. Materials Science Technology, 2004, 20 : 399–402.

DOI: 10.1179/026708304225012279

Google Scholar

[23] K. Ohishi T.R. Mcnelley. Microstructural modification of as-cast Ni Al bronze by friction stir processing. Metallurgical and Materials Transactions A, 2004, 35: 2951–2961.

DOI: 10.1007/s11661-004-0242-1

Google Scholar

[24] J.Q. Su, T.W. Nelson, C.J. Sterling. Friction stir processing of large-area bulk UFG aluminum alloys. Scripta Materialia, 2005, 52: 135–140.

DOI: 10.1016/j.scriptamat.2004.09.014

Google Scholar

[25] D.C. Hofmann, K.S. Vecchio. Submerged friction stir processing (SFSP): an improved method for creating ultra-fine grained bulk materials. Materials Science and Engineering. A 2005, 402: 234–241.

DOI: 10.1016/j.msea.2005.04.032

Google Scholar

[26] Min Yang • Chengying Xu • Chuansong Wu •Kuo-chi Lin • Yuh J. Chao • Linan An. Fabrication of AA6061/Al2O3 Nano ceramic particle reinforced composite coating by using friction stir processing. J Mater Sci, 2010, 45: 4431–4438.

DOI: 10.1007/s10853-010-4525-1

Google Scholar

[27] Y. Mazaheri∗, F. Karimzadeh, M.H. Enayati. A novel technique for development of A356/Al2O3 surface Nanocomposite by friction stir processing. Journal of Materials Processing Technology, 2011, 211: 1614– 1619.

DOI: 10.1016/j.jmatprotec.2011.04.015

Google Scholar

[28] Chen C.M., Kovacevic,R. Finite element modeling of friction stir welding thermal and thermomechanical analysis. Int. J. Mach. Tools Manuf. 2003, 43: 1319–1326.

DOI: 10.1016/s0890-6955(03)00158-5

Google Scholar

[29] M. Shariftabar.,A. Sarani.,S. Khorshahian.,M. Shafiee Afarani. Fabrication of 5052 Al/Al2O3 Nano ceramic particle reinforced composite via friction stir processing route. Materials and Design. 2011, 32: 4164-4172.

DOI: 10.1016/j.matdes.2011.04.048

Google Scholar

[30] Sato S.Y., Sugiura.Y., Shoji.Y., Park S.H.C., Kokawa.H., Ikeda.K. Post weld formability of friction stir welded Al alloy5052. Materials Science Engineering. A, 2004, 369: 138: 143.

DOI: 10.1016/j.msea.2003.11.035

Google Scholar

[31] A. Shafiei-Zarghani, S.F. Kashani-Bozorg, A. Zarei- Hanzaki. Wear assessment of Al/Al2O3 Nano-composite surface layer produced using friction stir processing. Wear, 2011, 270: 403–412.

DOI: 10.1016/j.wear.2010.12.002

Google Scholar

[32] S.R. Anvari, F. Karimzadeh, M.H. Enayati. Wear characteristics of Al–Cr–O surface Nano-composite layer fabricated on Al6061 plate by friction stir processing. Wear, 2013, 304: 144–151.

DOI: 10.1016/j.wear.2013.03.014

Google Scholar

[33] A.M. Hassan, A.T. Mayyas, A. Alrashdan, M.T. Hayajneh. Wear behavior of Al–Cu and Al–Cu/SiC components produced by powder metallurgy. Journal of Materials Science, 2008, 43: 5368–5375.

DOI: 10.1007/s10853-008-2760-5

Google Scholar

[34] H. Eskandari, R. Taheri. A Novel technique for development of aliminium alloy matrix/TiB2/ Al2O3 hybrid surface Nano composite by friction stir processing. Science direct. Procedia Materials Science, 2015, 11: 503 – 508.

DOI: 10.1016/j.mspro.2015.11.080

Google Scholar