[1]
Thostenson ET, Li C, Chou TW. Nanocomposites in context. Compos. Sci. Technol. 005; 65: 491–516.
Google Scholar
[2]
Iijima S. Helical microtubes of graphitic carbon. Nature 1991; 354: 56–8.
Google Scholar
[3]
Everett RK, Arsenault RJ, editors. Metal matrix composites: processing and interface. New York: Academic Press; (1991).
Google Scholar
[4]
Yu N, Chang YW. Effects of CNT diameter on the uniaxial stress–strain behavior of CNT/Epoxy composites. J Nanomater 2008: 6.
DOI: 10.1155/2008/834248
Google Scholar
[5]
Noguchi T, Magario A, Fukazawa S, Shimizu S, Beppu J, Seki M. Carbon nanotube/aluminium composites with uniform dispersion. Mater Trans 2004; 45(2): 602–4.
DOI: 10.2320/matertrans.45.602
Google Scholar
[6]
Sónia Simões, Filomena Viana, Marcos ALReis, Manuel FVieira. Improved dispersion of carbon nanotubes in aluminum nanocomposites. Compos Struct 2014; 108: 992–1000.
DOI: 10.1016/j.compstruct.2013.10.043
Google Scholar
[7]
Senthil Saravanan MS, Kumaresh Babu SP, Sivaprasad K. Mechanically alloyed carbon nanotubes (CNT) reinforced nanocrystalline AA 4032: synthesis and characterization. J Min Mater Charact Eng 2010; 9(11): 1027–35.
DOI: 10.4236/jmmce.2010.911074
Google Scholar
[8]
Bakshi SR, Keshri AK, Singh V, Seal S, Agarwal A. Interface in carbon Nanotube reinforced aluminum silicon composites: thermodynamic analysis and experimental verification. J Alloy Compd 2009; 481(1–2): 207–13.
DOI: 10.1016/j.jallcom.2009.03.055
Google Scholar
[9]
Hashin Z, Rosen BW. The elastic moduli of fiber-reinforced materials. J Appl Mech 1964; 31(2): 223–32.
Google Scholar
[10]
Frantziskonis GN. Fiber-matrix interface – information from experiments via simulation. Compos Struct 1994; 29(3): 231–47.
Google Scholar
[11]
R. George, K.T. Kashyap, R. Raw, S. Yamdagni, Strengthening in carbon Nanotube / aluminium (CNT/Al) composites, Scr. Mater. 53 (2005) 1159–1163.
DOI: 10.1016/j.scriptamat.2005.07.022
Google Scholar
[12]
W. Wang, P. Ciselli, E. Kuznetsov, T. Peijs And A. H. Barber, Effective reinforcement in carbon nanotube–polymer composites, Phil. Trans. R. Soc. A (2008) 366, 1613–1626.
DOI: 10.1098/rsta.2007.2175
Google Scholar
[13]
A.M.K. Esawi et al. / Composites Science and Technology 70 (2010) 2237–2241.
Google Scholar
[14]
Coleman JN, Khan U, Blau WJ, Gun'ko YK. Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 2006; 44(9): 1624–52.
DOI: 10.1016/j.carbon.2006.02.038
Google Scholar
[15]
Chunyu Li, Tsu-Wei Chou, Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces, Composites Science and Technology, Volume 63, Issue 11, August 2003, Pages 1517–1524.
DOI: 10.1016/s0266-3538(03)00072-1
Google Scholar
[16]
K. T. Kashyap , R. G. Patil, On Young's modulus of multi-walled carbon nanotubes, Bulletin of Materials Science April 2008, Volume 31, Issue 2, pp.185-187.
DOI: 10.1007/s12034-008-0032-2
Google Scholar
[17]
Guanghua Gao, Tahir Cagin, and William A. Goddard III, Energetics, Structure, Mechanical and Vibrational Properties of Single Walled Carbon Nanotubes (SWNT), Nanotechnology 9 184-191 (1998).
DOI: 10.1088/0957-4484/9/3/007
Google Scholar
[18]
Information on http: /www. netcomposites. com/guide-tools/guide/formulae.
Google Scholar
[19]
Aluminum Association – Aluminum Standards and Data – 2009 Metric SI.
Google Scholar
[20]
Julien Stein, Blanka Lenczowski, Influence of the concentration and nature of carbon nanotubes on the mechanical properties of AA5083 aluminium alloy matrix composites, CARBON x x x ( 2 0 1 4 ) x x x –x x x.
DOI: 10.1016/j.carbon.2014.05.001
Google Scholar