[1]
V.P. Astakhov, Machining of Hard Materials-Definitions and Industrial Applications, in: J. Paulo Davim, (Ed. ), Machining of Hard Materials, Springer-Verlag London Limited, 2011, pp.1-32.
DOI: 10.1007/978-1-84996-450-0_1
Google Scholar
[2]
Serope Kalpakjian, Steven R. Schmid, Manufacturing Engineering and Technology, fourth ed., Pearson Education, Inc., New Delhi, (2014).
Google Scholar
[3]
Adeel H. Suhail, N. Ismail, S.V. Wong, N.A. Abdul Jalil, Surface Roughness Identification Using the Grey Relational Analysis with Multiple Performance Characteristics in Turning Operations, Arabian Journal for Science and Engineering. 37(4) (2012).
DOI: 10.1007/s13369-012-0229-y
Google Scholar
[4]
B. M Gopalsamy, B. Mondal, S. Ghosh, Optimisation of machining parameters for hard machining: grey relational theory approach and ANOVA, International Journal of Advanced Manufacturing Technology. 45 (2009) 1068-1086.
DOI: 10.1007/s00170-009-2054-3
Google Scholar
[5]
N. Senthilkumar, J. Sudha, V. Muthukumar, A grey-fuzzy approach for optimizing machining parameters and the approach angle in turning AISI 1045 steel, Advances in Production Engineering & Management. 10(4) (2015) 195-208.
DOI: 10.14743/apem2015.4.202
Google Scholar
[6]
Bin Zou, Ming Chen, Shasha Li, Study on finish-turning of NiCr20TiAl nickel-based alloy using Al2O3/TiN-coated carbide tools, International Journal of Advanced Manufacturing Technology. 53(1-4) (2011) 81-92.
DOI: 10.1007/s00170-010-2823-z
Google Scholar
[7]
C. Ahilan, S. Kumanan, N. Sivakumaran, Application of Grey based Taguchi method in multi-response optimization of turning process, Advances in Production Engineering & Management. 5(3) (2010) 171-180.
Google Scholar
[8]
T. Tamizharasan, N. Senthilkumar, Optimization of Cutting insert geometry using DEFORM-3D: Numerical Simulation and Experimental Validation, International Journal of Simulation Modelling. 11(2) (2012) 65-76.
DOI: 10.2507/ijsimm11(2)1.200
Google Scholar
[9]
Douglas C. Montgomery, Design and Analysis of Experiments, eight ed., John Wiley & Sons, Inc., USA, (2013).
Google Scholar
[10]
Ranjit K. Roy, Design of experiments using the Taguchi approach: 16 steps to product and process improvement, John Wiley & Sons, USA, (2001).
Google Scholar
[11]
N. Senthilkumar, T. Ganapathy, T. Tamizharasan, Optimization of Machining and Geometrical parameters in Turning process using Taguchi Method, Australian Journal of Mechanical Engineering. 12(2) (2014) 233-246.
DOI: 10.7158/m12-113.2014.12.2
Google Scholar
[12]
N. Senthilkumar, T. Tamizharasan, Experimental investigation of cutting zone temperature and flank wear correlation in turning AISI 1045 steel with different tool geometries, Indian Journal of Engineering & Materials Sciences. 21(2) (2014).
Google Scholar
[13]
Erik Oberg, Franklin D. Jones, Holbrook L. Horton, Henry H. Ryffel, Machinery's Handbook, twenty eight ed., Industrial Press, New York, (2008).
Google Scholar
[14]
Chorng-Jyh Tzeng, Yu-Hsin Lin, Yung-Kuang Yang, Ming-Chang Jeng, Optimization of turning operations with multiple performance characteristics using the Taguchi method and Grey relational analysis, International journal of materials processing technology. 209 (2009).
DOI: 10.1016/j.jmatprotec.2008.06.046
Google Scholar
[15]
N. Senthilkumar, T. Tamizharasan, V. Anandakrishnan, Experimental Investigation and Performance Analysis of Cemented Carbide Inserts of different geometries using Taguchi based Grey Relational Analysis, Measurement. 58 (2014) 520-536.
DOI: 10.1016/j.measurement.2014.09.025
Google Scholar
[16]
S. Rajesh, D. Devaraj, R. Sudhakara Pandian, S. Rajakarunakaran, Multi-response optimization of machining parameters on red mud-based aluminum metal matrix composites in turning process, International Journal of Advanced Manufacturing Technology. 67 (2013).
DOI: 10.1007/s00170-012-4525-1
Google Scholar
[17]
Lee-Ing Tong, Chung-HoWang, Hung-Cheng Chen, Optimization of multiple responses using principal component analysis and technique for order preference by similarity to ideal solution, International Journal of Advanced Manufacturing Technology. 27 (2005).
DOI: 10.1007/s00170-004-2157-9
Google Scholar
[18]
H. Hotelling, Analysis of a complex of statistical variables into principal components. Journal of Education Psychology. 24 (1993)417-441.
Google Scholar
[19]
N. Senthilkumar, T. Tamizharasan, S. Gobikannan, Application of Response Surface Methodology and Firefly Algorithm for optimizing Multiple Responses in Turning AISI 1045 Steel, Arabian Journal for Science and Engineering. 39(11) (2014) 8015-8030.
DOI: 10.1007/s13369-014-1320-3
Google Scholar
[20]
Hung-Chang Liao, Multi-response optimization using weighted principal component, International Journal of Advanced Manufacturing Technology. 27 (2006) 720-725.
DOI: 10.1007/s00170-004-2248-7
Google Scholar
[21]
N. Senthilkumar, T. Tamizharasan, Effect of Tool geometry in Turning AISI 1045 steel: Experimental Investigation and FEM analysis, Arabian Journal for Science and Engineering. 39(6) (2014) 4963-4975.
DOI: 10.1007/s13369-014-1054-2
Google Scholar