Three Dimensional Criterion for Creep Crack Propagation in C(T) Specimen

Article Preview

Abstract:

Experimental of two kinds of compact tension (CT) specimens’ creep crack propagation are carried out in this paper. Traditional fracture mechanics and three-dimensional fracture theory are compared and the results show that: The K-Tz two-parameter model can eliminate the thickness-effect on the crack growth rates in the relatively low K range, however when K exceed certain values the effect of thickness for crack growth rates still exists; The Ct and Ct-Tz model can describe the thickness-effect of creep crack growth rates in regions of high Ct; When the crack tip stress intensity factor K of the two kinds of thickness (B=5 mm, B=10 mm) specimens equal to 35 and 31 respectively, this material’s creep crack growth control parameter change from K to Ct.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

142-147

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. L. Guo, Elastoplastic three dimensional crack border field—I. Singular structure of the field, J. Engineering Fracture Mechanics. 46 (1993) 93-104.

DOI: 10.1016/0013-7944(93)90306-d

Google Scholar

[2] W. L. Guo, Elastoplastic three dimensional crack border field—II. Asymptotic solution for the field, J. Engineering Fracture Mechanics. 46 (1993) 105-113.

DOI: 10.1016/0013-7944(93)90307-e

Google Scholar

[3] W. L. Guo, Elasto-plastic three-dimensional crack border field—III. Fracture parameters, J. Engineering Fracture Mechanics. 51(1995) 51-71.

DOI: 10.1016/0013-7944(94)00215-4

Google Scholar

[4] Hao Liu, Rui Bao, Jianyu Zhang, Binjun Fei, A creep–fatigue crack growth model containing temperature and interactive effects, J. International Journal of Fatigue. 59 (2014) 34-42.

DOI: 10.1016/j.ijfatigue.2013.09.017

Google Scholar

[5] Florian Kuhn, Frank Zeismann, Angelika Brueckner-Foit, Crack growth mechanisms in an aged superalloy at high temperature, J. International Journal of Fatigue. 65 (2014) 86-92.

DOI: 10.1016/j.ijfatigue.2013.05.014

Google Scholar

[6] Kimberlu Maciejewski, Jinesh Dahal, Yaofeng Sun, and Hamouda Ghonem, Creep-Environment Interactions in Dwell-Fatigue Crack Growth of Nickel Based Superalloys, J. Metallurgical and Materials Transactions A. 45A (2014) 2508-2521.

DOI: 10.1007/s11661-014-2199-z

Google Scholar

[7] Magnus. Hörnqvist, Leif. Viskari, KatieL. Moore, Krystyna. Stiller, High-temperature crack growth in a Ni-base superalloy during sustained load, J. Materials Science & Engineering A. 609 (2014) 131-140.

DOI: 10.1016/j.msea.2014.04.102

Google Scholar

[8] D. M. Knowles, D. W. Hunt, The Influence of Microstructure and Environment on the Crack Growth Behavior of Powder Metallurgy Nickle Superalloy RR1000, J. Metallurgical and Materials Transactions A. 33A (2002) 3165-3172.

DOI: 10.1007/s11661-002-0302-3

Google Scholar

[9] D. G. Leo Prakash , M. J. Walsh , D. Maclachlan, A. M. Korsunsky, Crack growth micro-mechanisms in the IN718 alloy underthe combined influence of fatigue, creep and oxidation, J. International Journal of Fatigue. 31 (2009) 1966-(1977).

DOI: 10.1016/j.ijfatigue.2009.01.023

Google Scholar

[10] William M. Kane, C. J. McMahon Jr, Part II. Effects of grain-boundary structure on the path of cracking in polycrystals, J. Materials Science and Engineering A. 507 (2009) 61-65.

DOI: 10.1016/j.msea.2008.07.015

Google Scholar

[11] Hongqin Yang, Rui Bao, Jiazhen Zhang, An interaction crack growth model for creep-brittle superalloys with high temperature dwell time, J. Engineering Fracture Mechanics. 124-125 (2014) 112-120.

DOI: 10.1016/j.engfracmech.2014.04.006

Google Scholar

[12] S. G. Larsson, A. J. Carlsson, Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials, J. Journal of the Mechanics and Physics of Solids. 21 (1973) 263-277.

DOI: 10.1016/0022-5096(73)90024-0

Google Scholar

[13] N. P. O'Dowd, C. F. Shih, Family of crack tip fields characterized by a triaxiality parameter-I. Structure of fields, J. Journal of the Mechanics and Physics of Solids. 39 (1991) 989-1015.

DOI: 10.1016/0022-5096(91)90049-t

Google Scholar

[14] L. G. Zhao, J. Tong, J. Byrne, Stress intensity factor K and the elastic T-stress for corner cracks, J. International Journal of Fracture. 109 (2001) 209–225.

Google Scholar

[15] Jie Tong, T-stress and its implications for crack growth, J. Engineering Fracture Mechanics. 69 (2002) 1325–1337.

DOI: 10.1016/s0013-7944(02)00002-4

Google Scholar

[16] B. Zhang, W. L. Guo, Tz constraints of semi-elliptical surface cracks in elastic plates subjected to uniform tension loading, J. International Journal of Fracture. 131 (2005) 173-187.

DOI: 10.1007/s10704-004-5105-7

Google Scholar

[17] J. H. Zhao, W. L. Guo, C. M. She, et al., Three dimensional K-Tz stress fields around the embedded center elliptical crack front in elastic plates, J. Acta Mechanica Sinica. 22 (2006) 148-155.

DOI: 10.1007/s10409-006-0095-5

Google Scholar

[18] J. H. Zhao, W. L. Guo, C. M. She, The in-plane and out-of-plane stress constraint factors and K-T-Tz description of stress field near the border of a semi-elliptical surface crack, J. International Journal of Fatigue. 29 (2007) 435-443.

DOI: 10.1016/j.ijfatigue.2006.05.005

Google Scholar

[19] M. J. Xiang, Z. B. Yu, W. L. Guo, Characterization of three-dimensional crack border fields in creeping solids, J. International Journal of Solids and Structures. 48 (2011) 2695-2705.

DOI: 10.1016/j.ijsolstr.2011.05.013

Google Scholar

[20] M. J. Xiang, W. L. Guo, Formulation of the stress fields in power law solids ahead of three-dimensional tensile cracks, J. International Journal of Solids and Structures. 50 (2013) 3067-3088.

DOI: 10.1016/j.ijsolstr.2013.05.011

Google Scholar

[21] P. S. Yu, W. L. Guo, An equivalent thickness conception for prediction of surface fatigue crack growth life and shape evolution, J. Engineering Fracture Mechanics. 93 (2012) 65-74.

DOI: 10.1016/j.engfracmech.2012.06.008

Google Scholar

[22] J. P. Tan, S. T. Tu, G. Z. Wang, F. Z. Xuan, Effect and mechanism of out-of-plane constraint on creep crack growth behavior of a Cr–Mo–V steel, J. Engineering Fracture Mechanics. 99 (2013) 324-334.

DOI: 10.1016/j.engfracmech.2013.01.017

Google Scholar

[23] V. N. Shlyannikov, A. V. Tumanov, N. V. Boychenko, A creep stress intensity factor approach to creep–fatigue crack growth, J. Engineering Fracture Mechanics. 142 (2015) 201-219.

DOI: 10.1016/j.engfracmech.2015.05.056

Google Scholar

[24] J. W. Hutchinson, Singular behavior at the end of a tensile crack in a hardening material, J. J Mech Phys Solids. 16 (1968) 13-31.

Google Scholar

[25] J. R. Rice, G. R. Rosengren, Plane strain deformation near a crack tip in a power-law hardening material, J. J Mech Phys Solids. 16 (1968) 1-12.

DOI: 10.1016/0022-5096(68)90013-6

Google Scholar

[26] R. M. McMeeking, Finite deformation analysis of crack-tip opening in elastic-plastic materials and implications for fracture, J. 25 (1977) 357-381.

DOI: 10.1016/0022-5096(77)90003-5

Google Scholar

[27] J. R. Rice, et al., Recent finite element studies in plasticity and fracture mechanics, J. 17-18 (1979) 411-442.

Google Scholar

[28] C. Betegon, J. W. Hancock, Two-parameter characterization of elastic-plastic crack-tip fields, J. Journal of Applied Mechanics. 58 (1991) 104-110.

DOI: 10.1115/1.2897135

Google Scholar

[29] A. M. Al-Ani, J. W. Hancock, J-dominance of short cracks in tension and bending, J. Journal of the Mechanics and Physics of Solids. 39 (1991) 23-43.

DOI: 10.1016/0022-5096(91)90029-n

Google Scholar

[30] Y. J. Chao, S. Yang, M. A. Sutton, On the fracture of solids characterized by one or two parameters: theory and practice, J. Journal of the Mechanics and Physics of Solids. 42 (1994) 629-647.

DOI: 10.1016/0022-5096(94)90055-8

Google Scholar

[31] H. Riedel, J. Rice, Tensile cracks in creeping solids. ASTM STP 700. (1980) 112–130.

Google Scholar

[32] W. L. Guo, Recent advances in three-dimensional fracture mechanics, J. Key Engineering Materials. 183 ( 2000) 193-198.

DOI: 10.4028/www.scientific.net/kem.183-187.193

Google Scholar

[33] G. Z. Wang, et al., Effect of constraint induced by crack depth on creep crack-tip stress field in CT specimens, J. International Journal of Solids and Structures. 47 (2010) 51-57.

DOI: 10.1016/j.ijsolstr.2009.09.015

Google Scholar

[34] J.P. Tan, et al., Characterization and correlation of 3-D creep constraint between axially cracked pipelines and test specimens, J. Engineering Fracture Mechanics. 136 (2015) 96-114.

DOI: 10.1016/j.engfracmech.2015.01.018

Google Scholar